Instruction/ maintenance manual of the product TEMPERATURE CONTROLLER 1604-7 Chromalox
Go to page of 39
1604-7 Temperature Controller with mA Output Issue date r USER'S MANUAL May 2000 Chr omal ox 1604 1604-7-0-AB.p65 5/16/00, 10:50 AM 1.
CONTENTS MOUNTING REQUIREMENTS ........................... 1 OUTLINE AND CUT OUT DIMENSIONS ........... 2 CONNECTION DIAGRAMS ................................ 3 PRELIMINARY HARDWARE SETTINGS ........... 9 CONFIGURATION PROCEDURE .................... 10 OPERATIVE MODE .
III Model identification Model 1604 1/16 DIN Temperature Controller Code Output 1 - Heat or Cool 7 20 mA Output Code Output 2 - Alarm 1 Relay, 2 Amp at 250 VAC (Resistive load) Code 0 None 1 Out #3, 2 Amps at 250 V AC (Resistive load) 2 Heater Break Down input, Out #3 3 RS 485 Digital communications, Out #3 4 RS 485 Digital comm.
1 MOUNTING REQUIREMENTS Select a mounting location where there is minimum vibration and the ambient temperature range between 0 and 50 °C. The instrument can be mounted on a panel up to 15 mm thick with a square cutout of 45 x 45 mm. For outline and cutout dimensions refer to Fig.
2 OUTLINE AND CUT OUT DIMENSIONS Fig. 2 OUTLINE AND CUT-OUT DIMENSIONS 3.0 (75) 2.4 (60) 1.77 (45) 1.77 (45) 1.9 (48) 2.2 (56) 4.8 (122) 1604-7-1-AB.p65 5/16/00, 10:50 AM 2.
3 CONNECTION DIAGRAMS Connections are to be made with the instrument housing installed in its proper location. Fig. 3 .A REAR TERMINAL BLOCK A) MEASURING INPUTS NOTE : Any external components (like zener barriers etc.
4 LINEAR INPUT Fig. 6 mA, mV AND V INPUTS WIRING NOTE : 1) Don’t run input wires together with power cables. 2) Pay attention to the line resistance; a high line resistance may cause measurement errors. 3) When shielded cable is used, it should be grounded at one side only to avoid ground loop currents.
5 B) LOGIC INPUT Safety note: 1) Do not run logic input wiring together with power cables. 2) Use an external dry contact capable of switching 0.5 mA, 5 V DC. 3) The instrument needs 100 ms to recognize a contact status variation. 4) The logic inputs are NOT isolated by the measuring input Fig.
6 LINEAR OUTPUT This instrument is equipped with one linear output (OUT 1) programmable as: - main output (heating or cooling) - secondary output (cooling) - analog retransmission of the measured value - analog retransmission of the operative set point.
7 SERIAL INTERFACE RS-485 interface allows to connect up to 30 devices with one remote master unit. Fig. 11 - RS-485 WIRING The cable length must not exceed 1.5 km at 9600 BAUD. NOTE : The following report describes the signal sense of the voltage appearing across the interconnection cable as defined by EIA for RS-485.
8 NOTE : a single switch or circuit-breaker can drive more than one instrument. 9) When the NEUTRAL line is present, connect it to terminal 4. 1604-7-1-AB.
9 PRELIMINARY HARDWARE SETTINGS 1) Remove the instrument from its case. 2) It is necessary to set J106 according to the desired input type as shown in the following figure.
10 GENERAL NOTES for configuration. FUNC = This will memorize the new value of the selected parameter and go to the next parameter (increasing order). MAN = This will scroll back the parameters without memorization of the new value.
11 21 = TC type J range -150 / +1830 ° F 22 = TC type K range -150 / +2500 ° F 23 = TC type T range -330 / +750 ° F 24 = TC type N range -150 / +2550 ° F 25 = TC type R range 0 / +3200 ° F 26 = TC type S range 0 / +3200 ° F 27 = RTD type Pt 100 range-199.
12 P7 = analog retransmission - initial scale value. Available only when P5 = Pv.rt or SP.rt. It is programmable from -1999 to 4000. The decimal point will be positioned as selected with P2 parameter. P8 = analog retransmission - full scale value. Available only when P5 = Pv.
13 P12 = Alarm 2 operating mode Available only when P11 is equal to "AL2.P", "AL2.b" or "AL2.d". H.A. = High alarm (outside for band alarm) with automatic reset (latched). L.A. = Low alarm (inside for band alarm) with automatic reset (latched).
14 The configuration procedure is completed and the instrument shows " -.-.-.-. " on both displays. If no other setting is necessary, push the FUNC pushbutton, the display returns to show "COnF".
15 P24 = Alarm 1 action Available only when P9 = "AL1.P", "AL1.d" or "AL1.b". dir = direct action (relay energized in alarm condi- tion) rEV = reverse action (relay de-energized in alarm condition) P25 = alarm 1 stand-by (mask) function Available only when P9 = "AL1.
16 2 = the instrument starts in the same way it was left prior to power shut down but if the instrument was in manual mode, it will restart with a power output equal to 0.
17 NOTE : when the instrument detects an out of range condition, it assignes the P38 value to the PID output but P18 and P20 parameter are still active.
18 OPERATIVE MODE 1) Remove the instrument from its case. 2) Set the internal dip switch V101 in closed condi- tion 3) Re-insert the instrument. 4) Switch on the instrument.
19 Pushbutton functionality during operating mode. FUNC = o when the instrument is in "normal display mode" 1) with a brief pressure (<3s) it starts the parameter modification procedure. 2) with a pressure within 3s to 10s it changes the indication on the lower display (see "display function").
20 DIRECT ACCESS TO SET POINT When the device is in AUTO mode and in “ Normal Display Mode ” , it is possible to access directly to set point modification (SP or SP2). Pushing s or t for more than 2 s, the set point will begin changing. The new set point value becomes operative since no pushbutton has been depressed at the end of 2 s timeout.
21 SERIAL LINK The device can be connected to a host computer by a serial link. The host can put the device in LOCAL (functions and parameters are controlled via keyboard) or in REMOTE (functions and parameters are controlled via serial link).
22 When it is desired to switch from LOCK to UNLOCK condition, set a value equal to P17 parameter. When it is desired to switch from UNLOCK to LOCK condition, set a value different from P17 parameter. AL1 Alarm 1 threshold This parameter is available only if P 9 is equal to AL1.
23 Note :When device is working with SMART algorithm the Pb value will be limited by P31 and P32 parameters. HyS Hysteresis for ON/OFF control action This parameter is available only when Pb=0. Range: from 0.1% to 10.0% of the input span. ti Integral time This parameter is skipped if Pb=0 (ON/ OFF action).
24 Grd1 Ramp applied to an increasing set point change Range: from 1 to 100 digits per minute. Above this value the display shows “ InF ” meaning that the transfer will be done as a step change. Grd2 Ramp applied to a decreasing set point changes For other details see Grd1 parameter.
25 ERROR MESSAGES OVERRANGE, UNDERRANGE AND SENSOR LEADS BREAK INDICATIONS The device is capable to detect a fault on the process variable (OVERRANGE or UNDERRANGE or SENSOR LEADS BREAK).
26 ERROR LIST SEr Serial interface parameter error. 100 Write EEPROM error. 150 CPU error. 200 Tentative to write on protected memory. 201 - 2xx Configuration parameter error. The two less significant digits shown the number of the wrong parameter (ex.
27 GENERAL INFORMATIONS GENERAL SPECIFICATIONS Case : Polycarbonate grey dark color; self-extin- guishing degree: V-0 according to UL 94. Front protection - designed and tested for IP 65 (*) and NEMA 4X (*) for indoor locations (when panel gasket is installed).
28 STANDARD RANGES TABLE B) RTD ( R esistance T emperature D etector) Input : for RTD Pt 100 W , 3-wire connection. Input circuit : current injection. °C/°F selection : via front pushbuttons or serial link. Line resistance : automatic compensation up to 20 W /wire with no measurable error.
29 SET POINTS This instrument allows to use 2 set points: SP and SP2. The set point selection is possible only by logic input. Set point transfer : The transfer between one set point to another (or be.
30 Output level limiter : - For one control medium: from 0 to 100 % . - For two control mediums: from -100 to +100 %. This function may be operative at instrument start up for a programmable time (To avoid thermal shock and/or preheating the plant) otherwise it can be enabled by an external contact.
31 Operative mode : High or low programmable. Threshold : programmable from - 500 to +500 units. Hysteresis : programmable from 0.1 % to 10.0 % of the input span or 1 LDS. SERIAL COMMUNICATION INTERFACE Type : RS-485 Protocol type : MODBUS, JBUS, ERO polling/ selecting.
Appendix A.1 APPENDIX A DEFAULT PARAMETERS DEFAULT OPERATIVE PARAMETERS The control parameters can be loaded with predetermined default values. These data are the typical values loaded in the instrument prior to shipment from factory. To load the default values proceed as follows: a) The internal switch should be closed.
Appendix A.2 DEFAULT CONFIGURATION PARAM- ETERS The configuration parameters can be loaded with predetermined default values. These data are the typical values loaded in the instrument prior to shipment from factory. To load the default values proceed as follows: a) The internal switch (V101, see fig.
Appendix A.3 P29 On On P30 2 2 P31 30.0 30.0 P32 1.0 1.0 P33 00.20 00.20 P34 On On P35 0 0 P36 10 30 P37 0 0 P38 0.0 0.0 P39 nO.FL nO.FL P40 nO.FL nO.FL P41 Pid Pid P42 10.
Appendix A.4 1604-7-A-AB.p65 5/16/00, 10:50 AM 4.
Appendix A.5 170.IU0.160.400 Chromalox ® INSTRUMENTS AND CONTROLS 1382 HEIL QUAKER BOULEV ARD LA VERGNE, TN 37086-3536 PHONE (615) 793-3900 F AX (615) 793-3563 WIEGAND INDUSTRIAL DIVISION WIEGAND INDUSTRIAL DIVISION WIEGAND INDUSTRIAL DIVISION WIEGAND INDUSTRIAL DIVISION WIEGAND INDUSTRIAL DIVISION EMERSON ELECTRIC CO.
An important point after buying a device Chromalox TEMPERATURE CONTROLLER 1604-7 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Chromalox TEMPERATURE CONTROLLER 1604-7 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Chromalox TEMPERATURE CONTROLLER 1604-7 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Chromalox TEMPERATURE CONTROLLER 1604-7 you will learn all the available features of the product, as well as information on its operation. The information that you get Chromalox TEMPERATURE CONTROLLER 1604-7 will certainly help you make a decision on the purchase.
If you already are a holder of Chromalox TEMPERATURE CONTROLLER 1604-7, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Chromalox TEMPERATURE CONTROLLER 1604-7.
However, one of the most important roles played by the user manual is to help in solving problems with Chromalox TEMPERATURE CONTROLLER 1604-7. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Chromalox TEMPERATURE CONTROLLER 1604-7 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center