Instruction/ maintenance manual of the product IMY Apollo
Go to page of 48
THE APOLLO INTELLIGENT METER SERIES MODEL IMY INSTRUCTION MANUAL imhCVR.QXD 3/8/02 10:12 AM Page 1.
INTRODUCTION The Intelligent Meter for Thermistor Inputs (IMY) is another unit in our multi- purpose series of industrial contr ol pr oducts that ar e field-pr ogrammable to solve multiple applications.
Table of Contents SAFETY INFORMATION ······························································3 Safety Summary ···········.
Command String Examples ·························································2 8 Receiving Data from the IMY ···············.
SAFETY INFORMA TION SAFETY SUMMARY All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it.
GENERAL DESCRIPTION The Apollo Intelligent Thermistor Meter (IMY) accepts standard Thermistor inputs and precisely linearizes them into temperature readings. Like an RTD, a thermistor is a temperature sensitive resistor, but the thermistor provides a much larger resistance change per degree.
-5- Note: Analog “-” and Alarm common are separate and isolated from the signal common. The commons should NOT be tied together. BLOCK DIAGRAM *Reference Installation and Connections section for power connection.
PROGRAMMING AND OPERA TING THE IMY PROGRAMMING THE IMY Although the unit has been programmed at the factory, the set-ups will generally have to be changed to suit the application. Basic set-up is complete after selection of the temperature units, decimal point placement, and selection of the digital filtering level.
DISPLAY RESULT OF “P” BUTTON “Pro” <> “0” - Causes the indicator to return to normal display mode. Any changes to set-up data are permanently stored in the E 2 PROM.
MODULE #1 - PROGRAM THERMISTOR TYPE, TEMPERA TURE SCALE (F OR C) AND DECIMAL POINT POSITION Select the desired Thermistor type by pressing the “UP” or “DOWN” button.
MODULE #3 - PROGRAM FUNCTIONS ACCESSIBLE W/ FRONT P ANEL LOCKOUT This programming module programs what is accessible through the front panel when the PGM.
TEMPERATURE OFFSET VALUE = If the Integrator/Totalizer/Peak/Valley/Temperature Offset option is installed, this selects whether the programmed offset value will be displayed.
MODULE #4 - PROGRAM DIGIT AL FIL TER AND REMOTE INPUT PROGRAM DIGITAL FILTERING If the displayed process signal is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display.
PROGRAM FUNCTION OF E1-CON AND OPTIONAL E2-CON (Cont’d) “9” - If the alarm option is installed, a low level resets a latched or unlatched alarm into its inactive state. This provides manual override of alarms for system start-up and other unusual events such as system testing.
MODULE #5 - PROGRAM INTEGRA TOR/TOT ALIZER Programming for the integrator/totalizer consists of four programming steps: totalizer decimal point position, time base, scale factor and low temperature disable. Note that the decimal point position of the integrator/totalizer can be set independent of the decimal point position of the input.
MODULE #6 - PROGRAM ALARM/SETPOINT If the alarm option is installed, this module is used to configure the operation of the alarms to a variety of combinations.
ALARM #2 ASSIGNMENT TO INPUT OR INTEGRATOR/ TOTALIZER Alarm #2 may be programmed to activate on either the input or the integrator/totalizer value. If the integrator/totalizer option is not installed, this step defaults to the input.
MODULE #7 - PROGRAM SERIAL COMMUNICA TIONS Several programmable parameters must be programmed before serial communication can occur. BAUD RATE Select one of the baud rates from the list to match the baud rate of the printer, computer, controller, etc.
MODULE #8 - PROGRAM RE-TRANSMITTED ANALOG OUTPUT This programming module allows digital scaling of the 4 to 20 mA or 0 to 10 VDC analog output. The type of analog output is determined by the model ordered. (See Ordering Information for available models.
MODULE #9 - SERVICE OPERA TIONS The indicator has been fully calibrated at the factory. If the unit appears to be indicating incorrectly or inaccurately, refer to the troubleshooting section before attempting this procedure.
OPERA TING THE IMY After completing all set-up operations, the unit is ready to install and operate. After power is applied, a display test consisting of illuminating all segments for 2 seconds is performed. Afterward, the input or total will appear, depending upon the display mode prior to the last power-down.
F ACTOR Y CONFIGURA TION The following chart lists the programming of the unit when shipped from the factory. (In Program Module #9, Code 66 will restore the unit to these values.) “Pro 1”..... “tYPE” - “700” “SCALE” - “F” “dECPNt” - “0.
PROGRAMMING EXAMPLE As an example of a programming sequence, the following values, gained from a temperature-time monitoring application, are programmed into the indicator. DISPLAY: Display the actual temperature of a liquid solution in ° F. Activate alarm #1 output when temperature falls below 25 ° F, activate display alarm.
TEMPERA TURE MONIT ORING EXAMPLE An IMY is installed as a monitoring device and back-up controller for a freezer storage facility. Normally, the freezer temperature is maintained at about -29 ° C ± 2 ° . The absolute maximum allowable temperature of the freezer is 0 ° C.
INTEGRA TOR / T OT ALIZER / PEAK / V ALLEY / TEMPERA TURE OFFSET (Optional) INTEGRA T OR/TOT ALIZER The integrator/totalizer option simply adds input readings together using a programmable time base and scaling coefficient. The decimal point position of the integrator/totalizer can be programmed independent of the scaled input signal.
OFFSET AND SLOPE DISPLAY TEMPERATURE (Cont’d) SET-UP: “Pro 2” ..... “SLOPE” - 1.0638 “OFFSEt” - -5.3 This feature allows the operator to manipulate the displayed temperature reading.
S.F . = 110 x ( 3600 RR ) R x 10 110 28800 10 (8 Hours x 3600) S.F. = 1x.125 S.F. = .125 “Pro 5”.....“dECPNt” - 0.0 “tbASE ” - 2 “SCLFAC” - .125 “Lo-cut ” - 0.0 R This value is normally 1, but can be used as a course scale factor of 60 or 3600.
ALARMS (Optional) The alarm option consists of an additional printed circuit board with nine terminals. Six of these terminals are the two Form-C relays and the other three are the two open collector transistors, which act in parallel with the relays.
20 mA CURRENT LOOP SERIAL COMMUNICA TIONS (Optional) GENERAL DESCRIPTION The serial communication option is a half-duplex, two-way, 20 mA loop that can connect to a variety of printers, computers, terminals and controllers to suit many data-polling or automatic operation applications.
SENDING COMMANDS TO THE IMY When sending commands to the unit a command string must be constructed. The command string may consist of command codes, value identifiers, and numerical data. Below is a table outlining the codes the indicator will recognize.
If illegal commands or characters are sent to the IM, an asterisk (*) must be sent to clear the input buffer. The IM will not respond to an illegal or incomplete transmission. The diagrams show the difference in the timing considerations for either Abbreviated or Full Character Transmission, or if a Reset Command is issued.
RECEIVING DA T A FROM THE IMY Data is transmitted from the indicator whenever a “T” or “P” command is received via serial communications or a remote input, E1-CON or optional E2-CON pin is programmed for print request, is activated. If the abbreviated transmission was programmed, just data will be transmitted with no built-in delay.
SERIAL COMMUNICA TIONS EXAMPLES CONNECTING TO AN RLC PRINTER The drawing shows the indicator with the 20 mA Serial Communication Option set-up with an RLC Model DMPC printer. An external current source is required to implement the printer’s busy signal to the indicator’s receive loop, which prevents overruns.
-32- PROCESS CONTROLLING SYSTEM Six Model IMYs with Serial Communication Option are used to monitor and control the temperature of 6 ovens at a large bakery. The IMYs are located at each of the ovens in the production area of the building. The communications lines are run to an industrial computer located in the production offices.
RE-TRANSMITTED ANALOG OUTPUT (Optional) The re-transmitted analog output option transmits a digitally programmable 4 to 20 mA or 0 to 10 VDC signal to drive chart recorders, remote indicators and controllers.
ANALOG OUTPUT CALIBRA TION Although the analog output has been calibrated at the factory, zero and span adjustments are provided to compensate for small offsets and drifts. If excessive drift is noticed, the following calibration procedure may be performed.
APPENDIX “A” - INST ALLA TION & CONNECTIONS INST ALLA TION ENVIRONMENT The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.
EMC INST ALLA TION GUIDELINES Although this unit is designed with a high degree of immunity to ElectroMagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of electrical noise, source or coupling method into the unit may be different for various installations.
WIRING CONNECTIONS After the unit has been mechanically mounted, it is ready to be wired. All conductors should meet voltage and current ratings for each terminal. Also cabling should conform to approriate standards of good installation, local codes, and regulations.
APPENDIX “B” - SPECIFICA TIONS AND DIMENSIONS 1. DISPLAY: 4-digit with F/C indication, 0.56" (14.2 mm) high LED, minus sign displayed for negative temperatures. 6-digits for integrator/ totalizer. “Flashing” display for totalizer overflow.
15. ENVIRONMENTAL CONDITIONS : Operating Temperature Range: 0 to 50°C Storage Temperature Range: -40 to 80°C Operating and Storage Humidity : 85% max. relative humidity (non-condensing) from 0°C to 50°C. Altitude : Up to 2000 meters 16. SERIAL COMMUNICATIONS (Optional): Isolation To Signal Input Common : 500 Vrms for 1 min.
20. CERTIFICATIONS AND COMPLIANCES: SAFETY IEC 1010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use, Part 1.
APPENDIX “C” - TROUBLESHOOTING GUIDE -41- PROBLEM POSSIBLE CAUSE REMEDIES NO DISPLAY 1. Power off, improperly connected, or brown-out. 1a. Check wiring. b. Verify power. “PPPPPP” IN DISPLAY 1. Program data error. 1. Press “P” and Check data set-ups.
-42- Programming of the indicator is divided into modular steps. Each module is a short sequence of data entries. The front panel buttons “UP” and “DOWN” (shown as “arrows” on the front panel) are used to change the data and set-ups, while the “P” button is used to save or enter the data.
-43- “Pro 5” - PROGRAM INTEGRATOR/TOTALIZER “dECPNt” - Enter decimal point for totalizer “tbASE” - Enter time base 0 - second 1 - minute 2 - hour “SCLFAC” - Enter multiplying scale fac.
-44- APPENDIX “E” - ORDERING INFORMA TION MODEL NO. DESCRIPTION TOTALIZER/ PEAK/VALLEY SLOPE/OFFSET E2-CON ALARM OUTPUT SERIAL OUTPUT ANALOG OUTPUT PART NUMBERS FOR AVAILABLE SUPPLY VOLTAGES 115/2.
LIMITED W ARRANTY The Company warrants the products it manufactures against defects in materials and work- manship for a period limited to one year from the date of shipment, pr ovided the products have been stor ed, handled, installed, and used under proper conditions.
IMY/IM-A 3/02 DRAWING NO. LP0311 Red Lion Controls 20 Willow Springs Circle Y ork PA 17402 T el +1 (717) 767-6511 F ax +1 (717) 764-0839 Red Lion Controls BV Databankweg 6C NL - 3821 AL Amersfoort T e.
An important point after buying a device Apollo IMY (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Apollo IMY yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Apollo IMY - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Apollo IMY you will learn all the available features of the product, as well as information on its operation. The information that you get Apollo IMY will certainly help you make a decision on the purchase.
If you already are a holder of Apollo IMY, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Apollo IMY.
However, one of the most important roles played by the user manual is to help in solving problems with Apollo IMY. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Apollo IMY along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center