Instruction/ maintenance manual of the product RUBY-MM-1612 Diamond Systems
Go to page of 33
RUBY - MM - 1612 16 - Channel 12 - Bit Analog Output PC/104 Module User Manual V1.1 Copyright 2001 Diamond Systems Corporation 8430 - D Central Ave. Newark, CA 94560 Tel (510) 456 - 7800 Fax (510) 45 - 7878 techinfo@diamondsystems.com www.dia mondsystems.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 2 TABLE OF CONTENTS 1. DESCRIPTION .......................................................................................................................................... 3 2.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 3 RUBY - MM - 1612 16 - Channel Analog Output PC/104 Module 1. DESCRIPTION Ruby -MM- 1612 is a PC/104 - format data acquisition board that provides analog outputs and digital I/O for process control and other applications.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 4 2. I/O HEADER PINOUT Ruby -MM- 1612 provides a 50 - pin right - angle header labeled J3 for all user I/O. This header is located on the right side of the board. Pins 1, 2, 49, and 50 are marked to aid in proper orientation.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 5 3. BOARD CONFIGURATION Refer to the Drawing of Ruby - MM - 1612 on Page 8 for locations of headers described in Chapters 3 and 4. Base Address Each board in the system must have a diff erent base address.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 6 4. ANALOG OUTPUT RANGE CONFIGURATION Refer to the Drawing of Ruby - MM - 1612 on Page 8 for locations of headers described in Sections 3 and 4. Refer to Figure 4.1 on Page for an expla nation of the voltage reference circuitry.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 7 Table 4.1: Analog Output Configuration (Header J4) Range 5 F A B U 0 - 5V: X X X 0 - 10V: X X +/ - 5V: X X X +/ - 10V: X X 0 - 2.5V: X X X or X X +/ - 2.5V: X X X or X X An X means that a jumper is installed in that location.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 8 5. RUBY - MM - 1612 BOARD DRAWING J1: PC/104 8 - bit bus header J2: PC/104 16 - bit bus header (not used) J3: User I/O heade.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 9 6. I/O MAP Ruby -MM- 1612 occupies 8 consecutive 8 - bit locations in I/O space. For example, the default base address is 300 Hex (768 Decimal); in this case the boar d occupies addresses 300 - 307 (768 - 775).
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 10 7. REGISTER DEFINITIONS Base + 0, Write: DAC LSB register Bit No. 7 6 5 4 3 2 1 0 Name DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0 DA7 - 0 D/A data bits 7 - 0. DA0 is the LSB (least significant bit).
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 11 Base + 3, Write: External trigger register Bit No. 7 6 5 4 3 2 1 0 Name X X X X X X X TRIGEN X Bit not used. These bits will be ignored. TRIGEN Ext ernal trigger enable. 1 = enable, 0 = disable.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 12 8. 82C55 DIGITAL I/O CH IP OPERATION This is a short form description of the 82C55 digital I/O chip on the board.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 13 9. ANALOG OUTPUT RANGES AND RESOLUTION The table below lists the available fixed full - scale output ranges and their corresponding actual full - scale voltage ranges and resolution.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 14 10. D/A CODE COMPUTATION Two different methods are used to compute the 12 - bit D/A code used for analog output operat ions. For unipolar output ranges (positive voltages only), straight binary coding is used.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 15 Offset Binary Coding (for bipolar output ranges) This method takes into account the fact that the lowest output voltage is not zero but a negative value.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 16 11. HOW TO GENERATE AN A NALOG OUTPUT This chapter describes how to generate an analog output directly (without the use of the driver software ). Ruby -MM- 1612 has 12 - bit resolution analog outputs.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 17 Examples Single channel output Assume ch annels 0 - 7 are configured for 0 - 5V. To set channel 0 to 3V, do the following: D/A code is 3V / 5V x 4096 = 2458 (value is rounded to nearest integer) LSB = 2458 AND 255 = 154 MSB = (2458 AND 3840) / 256 = 9 Step 1.
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 18 12. CALIBRATION PROCEDUR E Calibration requires a voltmeter (at least 5 digits of precision is preferred) and a miniature screwdriver to turn the potentiometer screws. The common lead of the voltmeter must be connected to analog ground (not digital gr ound).
Copyright 2001 Diamond Systems Corp. Ruby - MM - 1612 User Manual V1.1 P. 19 13. SPECIFICATIONS Analog Outputs No. of outputs 16 voltage outputs Resolution 12 bits (1 part in 40 96) Fixed output ranges 0 - 5V, 0 - 10V unipolar, ± 5V, ± 10V bipolar Adjustable output range Preset to 2.
1 June 1998 82C55A CMOS Pr ogrammable P eripheral Interface Features • Pin Compatible with NMOS 8255A • 24 Programmab le I/O Pins • Fully TTL Compatible • High Speed, No “W ait State” Operation with 5MHz and 8MHz 80C86 and 80C88 • Direct Bit Set/Reset Capability • Enhanced Control W ord Read Capability • L7 Process • 2.
2 Functional Diagram Pin Description SYMBOL PIN NUMBER TYPE DESCRIPTION V CC 26 V CC : The +5V power supply pin. A 0.1 µ F capacitor between pins 26 and 7 is recommended for decoupling. GND 7 GROUND D0-D7 27-34 I/O DATA BUS: The Data Bus lines are bidirectional three-state pins connected to the system data bus.
3 Functional Description Data Bus Buffer This three-state bi-directional 8-bit buff er is used to interf ace the 82C55A to the system data bus . Data is transmitted or received b y the buff er upon ex ecution of input or output instructions by the CPU .
4 P orts A, B, and C The 82C55A contains three 8-bit por ts (A, B, and C). All can be configured to a wide variety of functional characteristics by the system softw are but each has its own special f eatures or “personality” to fur ther enhance the power and fle xibility of the 82C55A.
5 The modes f or P or t A and P or t B can be separately defined, while P or t C is divided into two portions as required by the P or t A and P or t B definitions. All of the output registers, including the status flip-flops, will be reset whene ver the mode is changed.
6 Mode 0 (Basic Input) Mode 0 (Basic Output) Mode 0 Configurations CONTROL WORD #0 CONTROL WORD #2 CONTROL WORD #1 CONTROL WORD #3 tRA tHR tRR tIR tAR tRD tDF RD INPUT CS, A1, A0 D7-D0 tA W tW A tWB .
7 CONTROL WORD #4 CONTROL WORD #8 CONTROL WORD #5 CONTROL WORD #9 CONTROL WORD #6 CONTROL WORD #10 CONTROL WORD #7 CONTROL WORD #11 Mode 0 Configurations (Continued) 1 D7 0 D6 0 D5 0 D4 1 D3 0 D2 0 D.
8 Operating Modes Mode 1 - (Strobed Input/Output). This functional configura- tion provides a means f or transf erring I/O data to or from a specified por t in conjunction with strobes or “hand shaking” signals. In mode 1, port A and por t B use the lines on por t C to generate or accept these “hand shaking” signals.
9 INTR (Interrupt Request) A “high” on this output can be used to interrupt the CPU when and input de vice is requesting ser vice. INTR is set b y the condition: STB is a “one”, IBF is a “one” and INTE is a “one”. It is reset by the f alling edge of RD .
10 Operating Modes Mode 2 (Strobed Bi-Directional Bus I/O) The functional configuration provides a means f or communi- cating with a peripheral device or structure on a single 8-bit bus f or both transmitting and receiving data (bi-directional bus I/O).
11 FIGURE 11. MODE CONTROL WORD FIGURE 12. MODE 2 NO TE: Any sequence where WR occurs before A CK and STB occurs before RD is permissible. (INTR = IBF • MASK • STB • RD ÷ OBF • MASK • ACK • WR) FIGURE 13.
12 MODE 2 AND MODE 0 (INPUT) MODE 2 AND MODE 0 (OUTPUT) MODE 2 AND MODE 1 (OUTPUT) MODE 2 AND MODE 1 (INPUT) FIGURE 14. MODE 2 COMBINA TIONS 1 D7 1 D6 D5 D4 D3 D2 D1 D0 CONTROL W ORD PC7 8 STBA P A7-P.
13 Special Mode Combination Considerations There are se veral combinations of modes possib le. F or any combination, some or all of P or t C lines are used f or control or status. The remaining bits are either inputs or outputs as defined by a “Set Mode” command.
14 Reading P ort C Status (Figures 15 and 16) In Mode 0, P or t C transf ers data to or from the peripheral de vice. When the 82C55A is programmed to function in Modes 1 or 2, P or t C generates or accepts “hand shaking” signals with the peripheral device .
An important point after buying a device Diamond Systems RUBY-MM-1612 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Diamond Systems RUBY-MM-1612 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Diamond Systems RUBY-MM-1612 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Diamond Systems RUBY-MM-1612 you will learn all the available features of the product, as well as information on its operation. The information that you get Diamond Systems RUBY-MM-1612 will certainly help you make a decision on the purchase.
If you already are a holder of Diamond Systems RUBY-MM-1612, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Diamond Systems RUBY-MM-1612.
However, one of the most important roles played by the user manual is to help in solving problems with Diamond Systems RUBY-MM-1612. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Diamond Systems RUBY-MM-1612 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center