Instruction/ maintenance manual of the product LIDAR HDL-32E Velodyne
Go to page of 28
HDL-32E High Definitio n LiD AR ™ Sensor U SER’S MANUAL AND PROGRAMMING GUIDE.
i 1 2 3 5 7 9 9 9 10 1 1 1 1 12 13 16 22 23 24 S A F E T Y N O T I C E S I N T R O D U C T I O N P R I N C I P L E S O F O P E R A T I O N S E T U P U S A G E External GPS Time Synchronization Packet .
[ i ] ! Ca utio n T o red uce the ri sk of ele ct ric s ho ck an d to avo id viol atin g t he warr anty , do not op en sens or body . Ref er se rv ic ing t o qua lifi ed se rvi ce pe rso nnel .
Congratulations on your purchase of a V elodyne HDL- 32E High Definition LiDAR Sensor . This sensor provides state-of-the-art 3D imaging. This manual describes how to set up and operate the HDL-32E, covers installation and wiring, addresses output packet construction and interpretation, along with GPS installation notes.
Principles of Operation The HDL-32E creates 360° 3D images by using 32 laser/detector pairs whose housing rapidly spins to scan the surrounding environment. This design allows for the lasers to each fire thousands of times per second, providing a rich, 3D point cloud.
This section describes the standard set up assuming you are connecting the sensor to a standard computer or laptop and mounting the sensor on a vehicle. For other connections and mounting locations, please contact Velodyne for technical assistance. T he standard setup involves: 1.
Connect Power and Computer The sensor units are commonly used in vehicle applications where standard 12 volt, 2 amp power is readily available. 1. Connect the interface module to power . 2. Connect the Ethernet connector to a standard PC or laptop RJ45 Ethernet port.
The HDL-32E sensor needs no configuration, calibration, or other setup to begin producing usable data. Once the unit is mounted and wired, supplying it power will cause it to start scanning and producing data packets. The quickest way to watch the HDL-32E in action is to use Digital Sensor Recorder (DSR), the viewer software included with the unit.
Alternatively , the calibration data can be found in the included db.xml file found on the CD included with the HDL- 32E. The calibration data for vertCorrection is the vertical correction angle for each laser, as viewed from the back of the unit and stated in degrees.
External GPS Time Synchronization The HDL- 32E can synchronize its data with precis ion GPS-supplied time pulses to enable users to ascertain the exact firing time of each laser in any particular packet. This capability requires a GPS receiver generating a sync pulse and the $GPRMC NMEA record over a dedicated RS-232 serial port.
[ 8 ] H D L - 3 2 E U s e r ’s M a n u a l The images below show the GPS receiver included with the HDL-32E. G P S E Q U I P M E N T GPS Interface Box Front & Back View Ether.
Packet Format and Status Byte for GPS T ime Stamping The 6 extra bytes at the end of the HDL- 32E data packet are used to report GPS timing. For every packet, the last 6 bytes are formatted as follows: 4 bytes: 32 bit unsigned integer time stamp. This value represents microseconds from the top of the hour to the first laser firing in the packet.
Laser Firing Sequence The laser firing order is the same as the order in the Ethernet packet. The most downward laser fires first, followed by the interle aved firings from the lower and upper “banks” of 16 lasers, as follows: The interleaving firing pattern is designed is to avoid and potential ghosting caused primarily by retro-reflectors.
[ 1 1 ] H D L - 3 2 E U s e r ’s M a n u a l Use this chart to troubleshoot common problems with the HDL-32E.
[ 12 ] H D L - 3 2 E U s e r ’s M a n u a l Laser: Sensor: Mechanical: Output: Dimensions: (Height//Diameter) Shipping Weight: (approx.
Digital Sensor Recorder (DSR) DSR is a windows-based 3 D point cloud visualizati on software program designed for use with the HDL- 32E. This software is a n “out of the box” tool for the rendering and recording of point cloud data from the HDL unit.
Once the input of streaming data has been confirmed through the live playback feature, click on the Record button and the program will request the name and location for the pcap file to be created. Recording will begin immediately once the file information has been entered.
DSR Key Controls Z oom: Z = Zoom in Shift, Z = Zoom o ut Z Axis Rotation: Y = Rotate CW Shift, Y = Rotate CCW X Axis Rotation: P = Rotate CW Shift, P = Rotate CCW Y Axis Rotation: R = Rotate CW Shift, R = Rotate CCW Z Shift: F = Forward B = Back X Shift: L = Left H = Right Y Shift: U = Up D = Down Aux.
Data Packet Format The HDL-32E outputs two UDP Ethernet packets — a data packet containing laser firing data located on Port 2368 and a positioning packet which contains GPS and positioning data located on Port 8308. The packet at Port 2368 contains a header, a data payload of firing data and status data.
Figure B1. [ 17 ] H D L - 3 2 E U s e r ’s M a n u a l Blank Blank Start identifier OxEEFF 2 mm increments (0 = no return within 100 m) User Datagram Protocol.
Positioning Packet Using outputs from onboard gryrometers and 2 ‐ axis accelerometers, orientations shown below in Figure B2, the po sitioning ethernet Packet provides motion data (rotational and acceleration) for the stationary base of the HDL ‐ 32E unit.
Figure B3. [ 19 ] H D L - 3 2 E U s e r ’s M a n u a l .
T ime Stamp : “7c bd 9c 91” 2442968444(919cbd7c hex)usec = 2442.9sec Time stamp from the head of the hour in usec. NMEA Sentence : “$GPRMC, 214042, A, 3708.
Ethernet Packet Example Captured via Wireshark. [ 21 ] H D L - 3 2 E U s e r ’s M a n u a l .
Coordinate Calculation Algorithm Sample Code After removing all the correction parameters except vertical correction, t he calculation code is: firingData::computeCoords(guint16 laserNum, boost::share.
Calibration and Orientation There are six axes of variation when determining the exact location of any given laser fi ring for the HDL-32. The axes are x, y , z, along with rotational, horizontal, and vertical angles. X, Y , Z. Both x and y offsets are zero and are calculated from the centerline of the device.
[ 24 ] H D L - 3 2 E U s e r ’s M a n u a l All times in microseconds.
V elodyne LiDAR, Inc. 345 Digital Drive Morgan Hill, CA 95037 408.465.2800 voice 408.779.9227 fax 408.779.9208 service fax www .velodynelidar .com Service E mail: lidarservice@velodyne.com Sales E mail: lidar@velodyne.com All Velodyne products are made in the U.
An important point after buying a device Velodyne LIDAR HDL-32E (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Velodyne LIDAR HDL-32E yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Velodyne LIDAR HDL-32E - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Velodyne LIDAR HDL-32E you will learn all the available features of the product, as well as information on its operation. The information that you get Velodyne LIDAR HDL-32E will certainly help you make a decision on the purchase.
If you already are a holder of Velodyne LIDAR HDL-32E, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Velodyne LIDAR HDL-32E.
However, one of the most important roles played by the user manual is to help in solving problems with Velodyne LIDAR HDL-32E. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Velodyne LIDAR HDL-32E along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center