Instruction/ maintenance manual of the product MI Miniature Infrared Sensor RayTek
Go to page of 95
MI Miniature Infrared Sensor Operating Instructions Rev. F 04/2006 54301.
Declaratio n of Conformity for the European Communit y This instrument conforms to: EMC: IEC/EN 61326 ‐ 1 Safety: EN .
Contacts Europe Raytek GmbH 13127 Berlin, German y Blankenburger Str. 135 Tel: +49 30 478008 – 0 +49 30 478008 – 400 Fax: +49 30 4710251 raytek@raytek.
W ARRANTY The manufacturer warrants this ins trument to be free from defects in material and workmans hip under normal use and service for the period of two years fr om date of purchase.
T ABLE OF C ONTENTS 1 SAFETY INSTRUCTIONS............................................ 1 2 DESCRIPTION ............................................................... 3 3 TECHNICAL DATA ..........................
5.3.1 Signal Output ................................................... 19 5.3.2 Head Ambient Temp. / Alarm Out p ut ............. 20 5.3.3 Thermo couple Output ....................................... 22 5.
8 ACCESSORIES ............................................................. 46 8.1 O VERVIEW ................................................................ 46 8.2 A DJUSTABLE M OUNTING B RACKET ......................... 48 8.
11.6.2 Analog Output, Scaling ................................. 73 11.6.3 Alarm Output................................................. 73 11.6.4 Factory defaul t values ..................................... 73 11.
Safety Instru ctions MI 1 1 Safety Instructions This document contains important infor mation, which should be kept at all times with the instrumen t during its operational life.
Safety Instru ctions 2 MI Operating In struc tions The following symbols are used to highlight essential safe ty information in the operation in structions: Helpful information regarding the optimal use of the instrume nt.
Description MI 3 2 Description The miniature infrared sensor s MI are noncontact infrared temperature me asurement sys tems.
Technical Data 4 MI 3 Technical Data 3.1 Measur ement Specif ications Temperature Range LT ‐ 40 to 600°C ( ‐ 40 to 1112°F) .
Technical Data MI 5 Temperature Resolution LT ± 0.1 K (± 0.2°F)* ± 0.25 K (± 0.
Technical Data 6 MI 3.2 Optica l Specifications Optical Resolution D:S MID, MIC; MIH 22:1 (typ.), 21:1 (guaranteed) MID, MIC; MIH 10:1 MID, MIC 2:1 At 90% energy in minimum and distanc e 400 mm (15.
Technical Data MI 7 3.3 Electric al Specifications Power Supply Voltage 12 to 26 VDC Current 100 mA Outputs 1.
Technical Data 8 MI 3.4 Environmental Specif ications Ambient Temperature MIH sensing head 0 to 180°C (32 to 356°F) MIC se.
Technical Data MI 9 3.5 Dimensions Figure 2: Dim ensions of Se nsing Head Standard cable length 1 m (3 ft.
Technical Data 10 MI Figure 3: Dim ensions of Ele ctronic Box 3.6 Scope of Delivery The scope of delivery includes the .
Basics MI 11 4 Basics 4.1 Measur ement of Infr ared Temperature All surfaces emit infrared rad iation The intensity of this infr ared radiation changes according to the temperatur e of the object.
Basics 12 MI 4.2 Emissivity of Target Object To determine the emissivity of the target object refer to section 12.1 Determination of Emissivity on page 81.
Basics MI 13 4.5 Electric al Interference To minimize electrical or electromagnetic interference or “noise” be aware of the .
Installation 14 MI 5 Installation 5.1 Positio ning Sensor location depends on the application. Before deciding on a location, yo.
Installation MI 15 Figure 4: Proper Sensor Placement 5.2 Wiring 5.2.1 Sensor Head Cable The manufacturer preinstall’s the sensor head cable between sensor head and electronic box.
Installation 16 MI 5.2.2 Cable for Power Supply and Outputs You need to connect the power supply (12 to 26 VDC) and the signal output wires. Use only cable with outside diameter from 4 to 6 mm (0.
Installation MI 17 Figure 6: Connecting of Cables to the Electronic Box 5. Put the following on the cable (as shown .
Installation 18 MI 5.3 Outputs Figure 7: Signal Outputs and Power Supply Electronic Box Signal Output Head Ambient Temp.
Installation MI 19 5.3.1 Signal Output Figure 8: Wiring of the Signal Output (mA or V) The signal output can be configured either as current or as voltage output.
Installation 20 MI 5.3.2 Head Ambient Temp. / Alar m Output This output can be configured either as output for the head ambient temperature (default configuration) or as an alarm output.
Installation MI 21 You may use a solid state relay for the alarm output. The outp ut is short circuit resistant with 100 Ω out put imped ance.
Installation 22 MI 5.3.3 Thermocouple Output If you are using a J ‐ or K ‐ thermocouple you must inst all a compensation cable.
Installation MI 23 5.4 Inputs FTC The three inputs FTC1, FTC2, and FTC3 are used for the external control of the unit.
Installation 24 MI 5.4.1 Emissivity Setting (a nalog contr olled) The input FTC1 can be configured to accept an analog voltage signal (0 to 5 VDC) to provide real time emissivi ty setting.
Installation MI 25 5.4.2 Emissivity Setting ( digital controlle d) The sensor’s electronics contains a table with 8 pre ‐ installed settings for emissivity.
Installation 26 MI 5.4.3 Ambient Background Temperature Compensatio n The sensor is capable of improving the accuracy of target temperature me asurements by taking into account the ambient or background temperature.
Installation MI 27 • Ambient background temperatu re compensation from a second temperature sensor (infrared or contact te mperature sensor) ensures extremely accurate results.
Installation 28 MI 5.4.4 Trigger and Hold Function The FTC3 input can be used as ex ternal trigger in conjunction with the software trigger mo de setting “Trigger” or “Hold”.
Installation MI 29 Hold: This mode acts as external generated hold function. A transition at the input FTC3 from logical high level to ward logical low level will transfer the current temperature toward the output.
Installation 30 MI 5.5 Connec ting to the PC via RS232 The RS232 interface comes with each model. Connect a single unit with a RS232 COM port by using the connection kit RAYMISCON.
Installation MI 31 5.6 Installin g of Multiple Sensors vi a RS485 The distance between the sensor and a computer can be up to 1200 m (4000 ft.) via RS485 interface.
Installation 32 MI For an installation of two or more sensor s in a RS485 network, each sensor is wired parallel to the othe rs. You may connect up to 32 units.
Installation MI 33 Go to the menu <Setup> <Sensor Setup>, and then select the register <Advanced Setup>. Use <Polling Address> for selecting the requested address.
Operation 34 MI 6 Operation Once you have the sensor positioned and connected properly, the system is ready for continuous operation.
Operation MI 35 6.2 Setting the Output Jumper In addition to the set mode in the unit, see section 6.
Operation 36 MI 6.3 Setting of Modes You can easily determine the unit’s mode or parameter by doing the following: Pre.
Operation MI 37 Display Mode Range C Target Temperature* (effected by signal processing) not adjustable A Head Ambient Temper ature not adjustable T Target Temperature (not effecte.
Operation 38 MI 6.4 Post Processing 6.4.1 Averaging Averaging is used to smooth the output signal.
Operation MI 39 object), the output signal reaches only 90% magnitude of the actual object temperatur e after the defined average time.
Operation 40 MI 6.4.2 Peak Hold The output signal follows the object temperature until a maximum is found.
Operation MI 41 6.4.3 Valley Hold The output signal follows the object temper ature until a mini mum is found.
Operation 42 MI 6.4.4 Advanced Peak Hold This function searches the sensor signal for a local maximu m (peak) and writes this value to the output until a new local maxi mum is found.
Operation MI 43 6.4.5 Advanced Valley Hold This function works similar to the advanced peak hold function, except it will search the signal for a local minimum.
Operation 44 MI 6.5 Factory Defa ults For activating the unit’ s factory default value s press the <Mode/Up> buttons on the electronic board simultaneously.
Options MI 45 7 Options Options are items tha t are factory installed and must be specified at time of order. The following are available: • Longer cable lengths: 3 m / 9.
Accessories 46 MI 8 Accessories 8.1 Overvi ew A full range of accessories for various applicatio ns and industrial environme nts are available.
Accessories MI 47 Figure 30: Standard Mounting Accessories Sensing Head Adjustable Bracket Fixed Bracket Electronic Box.
Accessories 48 MI 8.2 Adjustable Mountin g Bracket Figure 31: Adjustable Mo unting Bracket (XXXMIACAB) .
Accessories MI 49 8.3 Fixed Moun ting Bracket Figure 32: Fixed Mounting Bracket (XXXMIACFB) .
Accessories 50 MI 8.4 Air Purg ing Jacket The air purge jacket is used to keep dust, moi sture, airborne particles, and vapors away from the sensing he ad.
Accessories MI 51 Figure 34: Mounting the Air Purge Jacket 1. Remove the sensor (1) and cable from the electro nic box by disconnecting the wires from the electronic box.
Accessories 52 MI 8.5 Air Co oling System The sensing head can operate in ambient temperatures up to 200°C (392°F) with the air ‐ cooling system. The air ‐ cooling sy stem comes with a T ‐ adapter including 0.
Accessories MI 53 Figure 37: Maximum Ambient Temperature depending on Air Flow and Hose Length Note : “Hose Length“ is .
Accessories 54 MI Figure 38: Air Cooling System: Purgi ng Jacket The Air Cooling Sys tem consists of: (1) sensing head (.
Accessories MI 55 Figure 39: Air Cooling System: T ‐ Adapter .
Accessories 56 MI Figure 40: Dimensions of Air Cooling System Hose: inner Ø : 9 mm (0.35 in) outer Ø : 12 mm (0.
Accessories MI 57 8.6 Right Angle Mirror The right angle mirror comes in two different versions: XXXMIACRAJ right angle m.
Accessories 58 MI 8.7 Box Lid Figure 43: Box Lid with Vi ew Port for Post Ins tallations (XXXMIACV) .
Accessories MI 59 8.8 Protective Window The protective windo w can be used to protect the sensing head from dust and other contam ination. This should be applied especially for sensors without a lens.
Maintenance 60 MI 9 Maintenance Our sales representatives and cust omer service are always at your disposal for questi ons regarding application assistance, calibration, repair, and solutions to specific problems.
Maintenance MI 61 9.2 Fail ‐ Safe Operat ion The Fail ‐ Safe system is designed to alert the operator and provide a safe output in case of an y syste m failure.
Maintenance 62 MI Error Codes via RS232/485 Output Error Code Description T------ Invalid temperature reading T>>>>>> Temperature over range T<<<.
Maintenance MI 63 9.3 Sensing Head Exchange Sensing heads and electronic b oxes can only be interchanged in accordance to th.
Maintenance 64 MI <Down/Up> button s. Activa te your settings by pressing the <Mode> button. Figure 45: Sensing Head Calibration Data printed on the Cable (e.
Software MI 65 10 Software For use with RS232 or RS485 models, DataTemp MultiDrop software allows access to the extended digital features of the MID with an easy ‐ to ‐ use interface.
Programming Guide 66 MI 11 Programming Guide This section explains th e sensor’s communication protocol. A protocol is the set of commands that define all possible communications with the sensor.
Programming Guide MI 67 11.1 Transf er Modes The unit’s serial interface is either RS232 or RS485, depending on the model.
Programming Guide 68 MI 11.2 Gener al Command Structure Requesting a paramete r (Poll Mode) ?ECR “?“ is the command for .
Programming Guide MI 69 After switc hing the power to “ON“, the device is sending a notification: #XICRLF “#“ is the.
Programming Guide 70 MI 11.4 Device Setup 11.4.1 Temperat ure Calcula tion U=C unit for the tempe rature value E=0.950 Emissivity setting (Cau tion: according to the sett ings for “ES”, see section 11.
Programming Guide MI 71 There are eight ent ries possible for emissivity setting (1) and a related set point (threshold) (2).
Programming Guide 72 MI 11.4.3 Post Processing The following parameters can be set to deter mine the post processing mode, see section 6.4 Post Proc essing on page 38.
Programming Guide MI 73 11.6 Device Con trol 11.6.1 Output for the Ta rget Temperature The signal output can be set to 4 – 20 mA, 0 – 20 mA or mV.
Programming Guide 74 MI XF factory default values will be set 11.6.5 Lock Mode The access to the unit is possible via serial interface (software) and via the direct user input (mode butto ns, LCD display).
Programming Guide MI 75 AC=2 compensation with an extern al voltage signa l at the analog input FTC2 (0 V – 5V corresp.
Programming Guide 76 MI 11.7 Multip le Units (RS485 Multidrop Mode) Up to 32 units can be connected within a RS485 networ k, see section 5.6 Installing of Mult iple Sensors via RS485 on page 31.
Programming Guide MI 77 11.8 Command Set Description Char Format P B S Legal values Factory default LCD Poll parameter ? ?X/?XX * ?T Set parameter = X/XX=... * E=0 . 85 Set parameter without EEPROM storage # X/XX# * E#0.85 Multidrop addressing 001?E * * answer: 001!E0.
Programming Guide 78 MI Description Char Format P B S Legal values Factory default LCD Source: emissivity / setpoint for alarm output ES X * * I=constant number (E=0.950) E=external analogous input FTC1 D= E/XS digital selected FTC1-3 I Presel.
Programming Guide MI 79 Description Char Format P B S Legal values Factory default LCD Presel. setpoint / relay function SV nnn.n (1) Target temperature T nnn.
Programming Guide 80 MI (3) $ = UTQE (4) setting average / peak / valley / advanced hold cancels all other hold .
Appendix MI 81 12 Appendix 12.1 Determ ination of Emissivity Emissivity is a measure of an object’s ability to absorb and emit infrared energy. It can have a value between 0 and 1.
Appendix 82 MI 0.95. Finally, measure the te mperature of an adjacent area on the object and adjust the em issivity unt il the sa me tempera ture is reached.
Appendix MI 83 12.2 Typical Emissivity Va lues The following table provides a brief reference guide for determining emissivity and can be used when one of the above methods is not practical.
Appendix 84 MI M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0. 2-0.4 Alloy A3003, Oxidized 0.4 0.4 0.3 Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.
Appendix MI 85 Polished 0.05-0.2 0.05-0.2 0.05-0.1 Rough 0.4 0.4 0. 4 Oxidized 0.2-0.7 0.2-0.7 0. 2-0.6 Magnesium 0.03-0.15 0.03-0.15 0.02-0.1 Mercury 0.05-0.15 0.05-0.15 0.05-0.15 Molybdenum Oxidized 0.3-0.7 0.3-0.7 0. 2-0.6 Unoxidized 0.
Appendix 86 MI N ON -M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.9 0.95 Asphalt 0.95 0.95 Basalt 0.7 0.7 Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum 0.9 0.9 Ceramic 0.8-0.95 0.95 Clay 0.85-0.
Index MI 87 Index Accessories 46 Accuracy 4 Air pressure 12 Air Purge 46 Air Purge Jacket 12 Ambient Temperature 12 Average 60 Control Panel 34, 59 Emissivity 5, 11, 12, 60, 80, 82, 84.
An important point after buying a device RayTek MI Miniature Infrared Sensor (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought RayTek MI Miniature Infrared Sensor yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data RayTek MI Miniature Infrared Sensor - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, RayTek MI Miniature Infrared Sensor you will learn all the available features of the product, as well as information on its operation. The information that you get RayTek MI Miniature Infrared Sensor will certainly help you make a decision on the purchase.
If you already are a holder of RayTek MI Miniature Infrared Sensor, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime RayTek MI Miniature Infrared Sensor.
However, one of the most important roles played by the user manual is to help in solving problems with RayTek MI Miniature Infrared Sensor. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device RayTek MI Miniature Infrared Sensor along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center