Instruction/ maintenance manual of the product MI Miniature Infrared Sensor RayTek
Go to page of 95
 MI Miniature Infrared Sensor              Operating Instructions Rev. F 04/2006 54301.
      Declaratio n  of  Conformity  for  the  European  Communit y This  instrument  conforms  to:  EMC:  IEC/EN  61326 ‐ 1  Safety:  EN .
  Contacts  Europe  Raytek  GmbH  13127  Berlin,  German y  Blankenburger  Str.  135  Tel:  +49  30  478008  –  0   +49  30  478008  –  400  Fax:  +49  30  4710251  raytek@raytek.
  W ARRANTY  The  manufacturer  warrants  this  ins trument  to  be  free  from  defects  in  material  and  workmans hip  under  normal  use  and  service  for  the  period  of  two  years  fr om  date  of  purchase.
  T ABLE  OF  C ONTENTS  1  SAFETY  INSTRUCTIONS............................................ 1 2  DESCRIPTION ............................................................... 3 3  TECHNICAL  DATA ..........................
  5.3.1  Signal  Output ................................................... 19 5.3.2  Head  Ambient  Temp.  /  Alarm  Out p ut ............. 20 5.3.3  Thermo couple  Output ....................................... 22 5.
  8  ACCESSORIES ............................................................. 46 8.1  O VERVIEW ................................................................ 46 8.2  A DJUSTABLE  M OUNTING  B RACKET ......................... 48 8.
  11.6.2  Analog  Output,  Scaling ................................. 73 11.6.3  Alarm  Output................................................. 73 11.6.4  Factory  defaul t  values ..................................... 73 11.
Safety  Instru ctions  MI  1  1  Safety  Instructions  This  document  contains  important  infor mation,  which  should  be  kept  at  all  times  with  the  instrumen t  during  its  operational  life.
Safety  Instru ctions  2  MI  Operating  In struc tions  The  following  symbols  are  used  to  highlight  essential  safe ty  information  in  the  operation  in structions:  Helpful  information  regarding  the  optimal  use  of  the  instrume nt.
Description  MI  3  2  Description  The  miniature  infrared  sensor s  MI  are  noncontact  infrared  temperature  me asurement  sys tems.
Technical  Data  4  MI  3  Technical  Data  3.1  Measur ement  Specif ications  Temperature  Range  LT ‐ 40  to  600°C  ( ‐ 40  to  1112°F) .
Technical  Data  MI  5  Temperature  Resolution  LT  ±  0.1  K  (±  0.2°F)*   ±  0.25  K  (±  0.
Technical  Data  6  MI  3.2  Optica l  Specifications  Optical  Resolution  D:S  MID,  MIC;  MIH  22:1  (typ.),  21:1  (guaranteed)  MID,  MIC;  MIH  10:1  MID,  MIC  2:1  At  90%  energy  in  minimum  and  distanc e  400  mm  (15.
Technical  Data  MI  7  3.3  Electric al  Specifications  Power  Supply  Voltage  12  to  26  VDC  Current  100  mA  Outputs  1.
Technical  Data  8  MI  3.4  Environmental  Specif ications  Ambient  Temperature  MIH  sensing  head  0  to  180°C  (32  to  356°F)  MIC  se.
Technical  Data  MI  9  3.5  Dimensions   Figure  2:  Dim ensions  of  Se nsing  Head   Standard cable length 1 m (3 ft.
Technical  Data  10  MI   Figure  3:  Dim ensions  of  Ele ctronic  Box  3.6  Scope  of  Delivery  The  scope  of  delivery  includes  the .
Basics  MI  11  4  Basics  4.1  Measur ement  of  Infr ared  Temperature  All  surfaces  emit  infrared  rad iation  The  intensity  of  this  infr ared  radiation  changes  according  to  the  temperatur e  of  the  object.
Basics  12  MI  4.2  Emissivity  of  Target  Object  To  determine  the  emissivity  of  the  target  object  refer  to  section  12.1  Determination  of  Emissivity  on  page  81.
Basics  MI  13  4.5  Electric al  Interference  To  minimize  electrical  or  electromagnetic  interference  or  “noise”  be  aware  of  the  .
Installation  14  MI  5  Installation  5.1  Positio ning  Sensor  location  depends  on  the  application.  Before  deciding  on  a  location,  yo.
Installation  MI  15   Figure  4:  Proper  Sensor  Placement  5.2  Wiring  5.2.1  Sensor  Head  Cable  The  manufacturer  preinstall’s  the  sensor  head  cable  between  sensor  head  and  electronic  box.
Installation  16  MI  5.2.2  Cable  for  Power  Supply  and  Outputs  You  need  to  connect  the  power  supply  (12  to  26  VDC)  and  the  signal  output  wires.  Use  only  cable  with  outside  diameter  from  4  to  6  mm  (0.
Installation  MI  17   Figure  6:  Connecting  of  Cables  to  the  Electronic  Box  5.  Put  the  following  on  the  cable  (as  shown .
Installation  18  MI  5.3  Outputs   Figure  7:  Signal  Outputs  and  Power  Supply  Electronic Box Signal Output Head Ambient Temp.
Installation  MI  19  5.3.1  Signal  Output  Figure  8:  Wiring  of  the  Signal  Output  (mA  or  V)  The  signal  output  can  be  configured  either  as  current  or  as  voltage  output.
Installation  20  MI  5.3.2  Head  Ambient  Temp.  /  Alar m  Output  This  output  can  be  configured  either  as  output  for  the  head  ambient  temperature  (default  configuration)  or  as  an  alarm  output.
Installation  MI  21  You  may  use  a  solid  state  relay  for  the  alarm  output.  The  outp ut  is  short  circuit  resistant  with  100 Ω out put  imped ance.
Installation  22  MI  5.3.3  Thermocouple  Output  If  you  are  using  a  J ‐ or  K ‐ thermocouple  you  must  inst all  a  compensation  cable.
Installation  MI  23  5.4  Inputs  FTC  The  three  inputs  FTC1,  FTC2,  and  FTC3  are  used  for  the  external  control  of  the  unit.
Installation  24  MI  5.4.1  Emissivity  Setting  (a nalog  contr olled)  The  input  FTC1  can  be  configured  to  accept  an  analog  voltage  signal  (0  to  5  VDC)  to  provide  real  time  emissivi ty  setting.
Installation  MI  25  5.4.2  Emissivity  Setting  ( digital  controlle d)  The  sensor’s  electronics  contains  a  table  with  8  pre ‐ installed  settings  for  emissivity.
Installation  26  MI  5.4.3  Ambient  Background  Temperature  Compensatio n  The  sensor  is  capable  of  improving  the  accuracy  of  target  temperature  me asurements  by  taking  into  account  the  ambient  or  background  temperature.
Installation  MI  27  • Ambient  background  temperatu re  compensation  from  a  second  temperature  sensor  (infrared  or  contact  te mperature  sensor)  ensures  extremely  accurate  results.
Installation  28  MI  5.4.4  Trigger  and  Hold  Function  The  FTC3  input  can  be  used  as  ex ternal  trigger  in  conjunction  with  the  software  trigger  mo de  setting  “Trigger”  or  “Hold”.
Installation  MI  29  Hold:  This  mode  acts  as  external  generated  hold  function.  A  transition  at  the  input  FTC3  from  logical  high  level  to ward  logical  low  level  will  transfer  the  current  temperature  toward  the  output.
Installation  30  MI  5.5  Connec ting  to  the  PC  via  RS232  The  RS232  interface  comes  with  each  model.  Connect  a  single  unit  with  a  RS232  COM  port  by  using  the  connection  kit  RAYMISCON.
Installation  MI  31  5.6  Installin g  of  Multiple  Sensors  vi a  RS485  The  distance  between  the  sensor  and  a  computer  can  be  up  to  1200  m  (4000  ft.)  via  RS485  interface.
Installation  32  MI  For  an  installation  of  two  or  more  sensor s  in  a  RS485  network,  each  sensor  is  wired  parallel  to  the  othe rs.  You  may  connect  up  to  32  units.
Installation  MI  33  Go  to  the  menu  <Setup>  <Sensor  Setup>,  and  then  select  the  register  <Advanced  Setup>.  Use  <Polling  Address>  for  selecting  the  requested  address.
Operation  34  MI  6  Operation  Once  you  have  the  sensor  positioned  and  connected  properly,  the  system  is  ready  for  continuous  operation.
Operation  MI  35  6.2  Setting  the  Output  Jumper  In  addition  to  the  set  mode  in  the  unit,  see  section  6.
Operation  36  MI  6.3  Setting  of  Modes  You  can  easily  determine  the  unit’s  mode  or  parameter  by  doing  the  following:  Pre.
Operation  MI  37  Display  Mode Range C  Target Temperature* (effected by signal processing) not adjustable A Head Ambient Temper ature not adjustable T Target Temperature (not effecte.
Operation  38  MI  6.4  Post  Processing  6.4.1  Averaging  Averaging  is  used  to  smooth  the  output  signal.
Operation  MI  39  object),  the  output  signal  reaches  only  90%  magnitude  of  the  actual  object  temperatur e  after  the  defined  average  time.
Operation  40  MI  6.4.2  Peak  Hold  The  output  signal  follows  the  object  temperature  until  a  maximum  is  found.
Operation  MI  41  6.4.3  Valley  Hold  The  output  signal  follows  the  object  temper ature  until  a  mini mum  is  found.
Operation  42  MI  6.4.4  Advanced  Peak  Hold  This  function  searches  the  sensor  signal  for  a  local  maximu m  (peak)  and  writes  this  value  to  the  output  until  a  new  local  maxi mum  is  found.
Operation  MI  43  6.4.5  Advanced  Valley  Hold  This  function  works  similar  to  the  advanced  peak  hold  function,  except  it  will  search  the  signal  for  a  local  minimum.
Operation  44  MI  6.5  Factory  Defa ults  For  activating  the  unit’ s  factory  default  value s  press  the  <Mode/Up>  buttons  on  the  electronic  board  simultaneously.
Options  MI  45  7  Options  Options  are  items  tha t  are  factory  installed  and  must  be  specified  at  time  of  order.  The  following  are  available:  • Longer  cable  lengths:  3  m  /  9.
Accessories  46  MI  8  Accessories  8.1  Overvi ew  A  full  range  of  accessories  for  various  applicatio ns  and  industrial  environme nts  are  available.
Accessories  MI  47   Figure  30:  Standard  Mounting  Accessories  Sensing Head Adjustable Bracket Fixed Bracket Electronic Box.
Accessories  48  MI  8.2  Adjustable  Mountin g  Bracket   Figure  31:  Adjustable  Mo unting  Bracket  (XXXMIACAB) .
Accessories  MI  49  8.3  Fixed  Moun ting  Bracket   Figure  32:  Fixed  Mounting  Bracket  (XXXMIACFB) .
Accessories  50  MI  8.4  Air  Purg ing  Jacket  The  air  purge  jacket  is  used  to  keep  dust,  moi sture,  airborne  particles,  and  vapors  away  from  the  sensing  he ad.
Accessories  MI  51   Figure  34:  Mounting  the  Air  Purge  Jacket  1.  Remove  the  sensor  (1) and  cable  from  the  electro nic  box  by  disconnecting  the  wires  from  the  electronic  box.
Accessories  52  MI  8.5  Air  Co oling  System  The  sensing  head  can  operate  in  ambient  temperatures  up  to  200°C  (392°F)  with  the  air ‐ cooling  system.  The  air ‐ cooling  sy stem  comes  with  a  T ‐ adapter  including  0.
Accessories  MI  53   Figure  37:  Maximum  Ambient  Temperature  depending  on  Air  Flow  and  Hose  Length  Note :  “Hose  Length“  is .
Accessories  54  MI   Figure  38:  Air  Cooling  System:  Purgi ng  Jacket  The  Air  Cooling  Sys tem  consists  of:  (1)  sensing  head  (.
Accessories  MI  55   Figure  39:  Air  Cooling  System:  T ‐ Adapter .
Accessories  56  MI   Figure  40:  Dimensions  of  Air  Cooling  System  Hose: inner Ø : 9 mm (0.35 in) outer Ø : 12 mm (0.
Accessories  MI  57  8.6  Right  Angle  Mirror  The  right  angle  mirror  comes  in  two  different  versions:  XXXMIACRAJ  right  angle  m.
Accessories  58  MI  8.7  Box  Lid   Figure  43:  Box  Lid  with  Vi ew  Port  for  Post  Ins tallations  (XXXMIACV) .
Accessories  MI  59  8.8  Protective  Window  The  protective  windo w  can  be  used  to  protect  the  sensing  head  from  dust  and  other  contam ination.  This  should  be  applied  especially  for  sensors  without  a  lens.
Maintenance  60  MI  9  Maintenance  Our  sales  representatives  and  cust omer  service  are  always  at  your  disposal  for  questi ons  regarding  application  assistance,  calibration,  repair,  and  solutions  to  specific  problems.
Maintenance  MI  61  9.2  Fail ‐ Safe  Operat ion  The  Fail ‐ Safe  system  is  designed  to  alert  the  operator  and  provide  a  safe  output  in  case  of  an y  syste m  failure.
Maintenance  62  MI  Error  Codes  via  RS232/485  Output Error Code Description T------ Invalid temperature reading T>>>>>> Temperature over range T<<<.
Maintenance  MI  63  9.3  Sensing  Head  Exchange  Sensing  heads  and  electronic  b oxes  can  only  be  interchanged  in  accordance  to  th.
Maintenance  64  MI  <Down/Up>  button s.  Activa te  your  settings  by  pressing  the  <Mode>  button.   Figure  45:  Sensing  Head  Calibration  Data  printed  on  the  Cable  (e.
Software  MI  65  10  Software  For  use  with  RS232  or  RS485  models,  DataTemp  MultiDrop  software  allows  access  to  the  extended  digital  features  of  the  MID  with  an  easy ‐ to ‐ use  interface.
Programming  Guide  66  MI  11  Programming  Guide  This  section  explains  th e  sensor’s  communication  protocol.  A  protocol  is  the  set  of  commands  that  define  all  possible  communications  with  the  sensor.
Programming  Guide  MI  67  11.1  Transf er  Modes  The  unit’s  serial  interface  is  either  RS232  or  RS485,  depending  on  the  model.
Programming  Guide  68  MI  11.2  Gener al  Command  Structure  Requesting  a  paramete r  (Poll  Mode)  ?ECR  “?“  is  the  command  for  .
Programming  Guide  MI  69  After  switc hing  the  power  to  “ON“,  the  device  is  sending  a  notification:  #XICRLF  “#“  is  the.
Programming  Guide  70  MI  11.4  Device  Setup  11.4.1  Temperat ure  Calcula tion  U=C  unit  for  the  tempe rature  value  E=0.950  Emissivity  setting  (Cau tion:  according  to  the  sett ings  for  “ES”,  see  section  11.
Programming  Guide  MI  71  There  are  eight  ent ries  possible  for  emissivity  setting  (1)  and  a  related  set  point  (threshold)  (2).
Programming  Guide  72  MI  11.4.3  Post  Processing  The  following  parameters  can  be  set  to  deter mine  the  post  processing  mode,  see  section  6.4  Post  Proc essing  on  page  38.
Programming  Guide  MI  73  11.6  Device  Con trol  11.6.1  Output  for  the  Ta rget  Temperature  The  signal  output  can  be  set  to  4  –  20  mA,  0  –  20  mA  or  mV.
Programming  Guide  74  MI  XF  factory  default  values  will  be  set  11.6.5  Lock  Mode  The  access  to  the  unit  is  possible  via  serial  interface  (software)  and  via  the  direct  user  input  (mode  butto ns,  LCD  display).
Programming  Guide  MI  75  AC=2  compensation  with  an  extern al  voltage  signa l  at  the  analog  input  FTC2  (0  V  –  5V  corresp.
Programming  Guide  76  MI  11.7  Multip le  Units  (RS485  Multidrop  Mode)  Up  to  32  units  can  be  connected  within  a  RS485  networ k,  see  section  5.6  Installing  of  Mult iple  Sensors  via  RS485  on  page  31.
Programming  Guide  MI  77  11.8  Command  Set  Description Char Format P B S Legal values Factory default LCD Poll parameter ? ?X/?XX * ?T Set parameter = X/XX=... * E=0 . 85 Set parameter without EEPROM storage # X/XX# * E#0.85 Multidrop addressing 001?E * * answer: 001!E0.
Programming  Guide  78  MI  Description Char Format P B S Legal values Factory default LCD Source: emissivity / setpoint for alarm output ES X * * I=constant number (E=0.950) E=external analogous input FTC1 D= E/XS digital selected FTC1-3 I Presel.
Programming  Guide  MI  79  Description Char Format P B S Legal values Factory default LCD Presel. setpoint / relay function SV nnn.n (1) Target temperature T nnn.
Programming  Guide  80  MI  (3)  $  =  UTQE  (4)  setting  average  /  peak  /  valley  /  advanced  hold  cancels  all  other  hold  .
Appendix  MI  81  12  Appendix  12.1  Determ ination  of  Emissivity  Emissivity  is  a  measure  of  an  object’s  ability  to  absorb  and  emit  infrared  energy.  It  can  have  a  value  between  0  and  1.
Appendix  82  MI  0.95.  Finally,  measure  the  te mperature  of  an  adjacent  area  on  the  object  and  adjust  the  em issivity  unt il  the  sa me  tempera ture  is  reached.
Appendix  MI  83  12.2  Typical  Emissivity  Va lues  The  following  table  provides  a  brief  reference  guide  for  determining  emissivity  and  can  be  used  when  one  of  the  above  methods  is  not  practical.
Appendix  84  MI  M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0. 2-0.4 Alloy A3003, Oxidized 0.4 0.4 0.3 Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.
Appendix  MI  85  Polished 0.05-0.2 0.05-0.2 0.05-0.1 Rough 0.4 0.4 0. 4 Oxidized 0.2-0.7 0.2-0.7 0. 2-0.6 Magnesium 0.03-0.15 0.03-0.15 0.02-0.1 Mercury 0.05-0.15 0.05-0.15 0.05-0.15 Molybdenum Oxidized 0.3-0.7 0.3-0.7 0. 2-0.6 Unoxidized 0.
Appendix  86  MI  N ON -M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.9 0.95 Asphalt 0.95 0.95 Basalt 0.7 0.7 Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum 0.9 0.9 Ceramic 0.8-0.95 0.95 Clay 0.85-0.
Index  MI  87  Index  Accessories 46 Accuracy 4 Air pressure 12 Air Purge 46 Air Purge Jacket 12 Ambient Temperature 12 Average 60 Control Panel 34, 59 Emissivity 5, 11, 12, 60, 80, 82, 84.
An important point after buying a device RayTek MI Miniature Infrared Sensor (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
                If you have not bought RayTek MI Miniature Infrared Sensor yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data RayTek MI Miniature Infrared Sensor - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, RayTek MI Miniature Infrared Sensor you will learn all the available features of the product, as well as information on its operation. The information that you get RayTek MI Miniature Infrared Sensor will certainly help you make a decision on the purchase.
If you already are a holder of RayTek MI Miniature Infrared Sensor, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime RayTek MI Miniature Infrared Sensor.
However, one of the most important roles played by the user manual is to help in solving problems with RayTek MI Miniature Infrared Sensor. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device RayTek MI Miniature Infrared Sensor along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center