Instruction/ maintenance manual of the product 370755B-01 National Instruments
Go to page of 127
MA TRIXx TM Xmath TM Model Reduction Module Xmath Mo del Reducti on Modul e April 2004 Edit ion Part Numb er 37075 5B-01.
Supp ort Worl dwide Tec hnical Supp ort and Pro duct Infor mation ni.com Nati onal In strum ents Corp orate Headqu arter s 11500 Nor th Mopac E xpressway Austin, T exas 78759 -3504 USA Tel: 512 683 01.
Important Information Warrant y The media on whi ch you receive National Instruments softw are are warranted n ot to fail to exec ute programming ins tructions , due to defects in mat erials an d workman ship, for a period of 9 0 days fr om date of sh ipment, a s evidence d by receipt s or othe r documenta tion.
Conventions The follo wing con ventions are used in this manual: [ ] Square brackets enclose optional items—for ex ample, [ response ]. Square brackets also cite bibliographic references. » The » symbol leads you throu gh nested menu items and dialog box options to a f inal action.
© Nationa l Instrume nts Corpora tion v Xmath Mod el Redu ction Modu le Contents Chapter 1 Introdu ctio n Using This Manual.............. ........... ................. ........... ................. ............ ........... ............ 1-1 Document Organization.
Contents Xmath Model R eduction M odule vi ni.com Onepass Algorithm ................... ................. ........... ................. ........... ............ .. 2- 18 Multipass Algorithm ................ ................. ........... ........... ..
Contents © Nationa l Instrume nts Corpora tion vii Xmath Mod el Redu ction Modu le Algorithm ....... ............ ................ ............ ........... ................. ........... ................. . 4-18 Additional Backgr ound ................
© Nationa l Instrume nts Corpora tion 1-1 Xmath Mod el Redu ction Modu le 1 Introduction This chapter starts with an outlin e of the m anual and s ome usefu l notes. It also provides an ov erview of the Model Re duction Module, describes th e functions in this module, and introdu ces nomenclature and concepts used throughout this manual.
Chapter 1 Introduction Xmath Model R eduction M odule 1-2 ni.com • Chapter 5, Utilit ies , describes three utility functio ns: hankelsv( ) , stable( ) , and compare( ) . • Chapter 6, Tu torial , illustrates a nu mber of the MRM func tions and their underlying ideas.
Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-3 Xmath Mod el Redu ction Modu le Relate d Publica tions For a complete list of MATRIXx publicat ions, refer to Chapter 2, MATRIXx Pu blication s, Onlin e Help, and Customer Support , o f the MATRIXx Getting Started Guide.
Chapter 1 Introduction Xmath Model R eduction M odule 1-4 ni.com As sho wn in Figure 1-1, fu nctions are p rov ided to ha ndle four broad t asks: • Model reduction with additi ve errors • Model re.
Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-5 Xmath Mod el Redu ction Modu le Certain restriction s re garding minimality and stability are required of the input data, and are summarized in T able 1-1. Documentation of the individual functions sometimes indicates how th e restrictions can be circu mvented.
Chapter 1 Introduction Xmath Model R eduction M odule 1-6 ni.com • L 2 approximation, in which the L 2 norm of impuls e respon se erro r (or, by P arse v al’ s theorem, the L 2 norm of the transf .
Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-7 Xmath Mod el Redu ction Modu le • An inequality or bound is tigh t if it can be met in practice, for e xample is tight because the inequality becomes an equality for x =1 .
Chapter 1 Introduction Xmath Model R eduction M odule 1-8 ni.com • The controllabilit y grammian is also E [ x ( t ) x ′ ( t )] when the system has been e xcited from time – ∞ b y zero mean white noise with . • The observability grammian can be thought of as measuring the information contained in the outp ut concerning an initial state.
Chap ter 1 Int rodu cti on © Nationa l Instrume nts Corpora tion 1-9 Xmath Mod el Redu ction Modu le • Suppose t he transfer -fu nction matri x corresponds to a discr ete-ti me system, with state v ariable dimen sion n .
Chapter 1 Introduction Xmath Model R eduction M odule 1-10 ni.com Interna lly Ba lanced Re alizatio ns Suppose that a realization of a transfer-fu nction matrix has the controllability and observ ability grammian property that P = Q = Σ for some diagonal Σ .
Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-11 Xma th Model Re ductio n Module This is almost the algorith m set out in Section II of [LHPW87]. The one dif ference (and it is minor) is that in [LH PW87], lower triangular Cholesky factors of P and Q are used, in place of U c S c 1/2 and U O S O 1/2 in forming H in step 2.
Chapter 1 Introduction Xmath Model R eduction M odule 1-12 ni.com and also: Re λ i ( A 22 )< 0 and . Usually , we expect that, in the sense that th e intuiti ve ar gument h inges on this, b ut it is n ot necessary .
Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-13 Xma th Model Re ductio n Module Similar considerations govern the discrete-time problem, where, can be appro ximated by: mreduce( ) can carry out si ngular pe rturbatio n. For fu rther di scussion , refer to Chapter 2, Addi tive Erro r Reduct ion .
Chapter 1 Introduction Xmath Model R eduction M odule 1-14 ni.com nonnegati ve h ermitian for all ω . If Φ is scalar , then Φ ( j ω ) ≥ 0 for all ω .
Chap ter 1 Int rodu cti on © Natio nal Instrum ents Cor poration 1-15 Xma th Model Re ductio n Module Low Order Controller De sign Through Order Reduction The Model Reduction Mo dule is par ticularly sui table for ach ieving l ow order cont roller des ign for a high or der plant.
Chapter 1 Introduction Xmath Model R eduction M odule 1-16 ni.com multiplicati ve red uction, as described in Chapter 4, Frequ ency-Weighted Error Redu ction , is a sound appro ach. Chapter 3, Multiplicative Error Reduction , and Ch apter 4, Frequency- Weighted Error Reduction , de v elop these ar guments mor e fully .
© Nationa l Instrume nts Corpora tion 2-1 Xmath Mod el Redu ction Modu le 2 Additive Error Reduction This chapter describes additive error reduction includin g discussions of truncation of, redu ction by, and p erturbatio n of balanced real izations.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-2 ni.com T runcation of Bal anced Realizations A group of funct ions can be used to achieve a reduct ion through tru ncation of a balanced r ealization.
Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-3 Xmath Mod el Redu ction Modu le A very attracti ve f eature of the truncation procedure is the av ailability of an error bound.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-4 ni.com proper . So, ev en if all zeros are un stable, the max imum phase shift when ω mov es from 0 to ∞ is (2 n – 3) π /2 .
Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-5 Xmath Mod el Redu ction Modu le order model is not one in general obtainable by truncation of an internally-balanced realization of the full order model. Figure 2-1 sets o ut se veral rou tes to a reduced-o rder realization.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-6 ni.com with controllability and obser vab ility grammians given b y , in which the diagonal entries o f Σ are in decreasing order , that is, σ 1 ≥σ 2 ≥ ···, and su ch that the last diagonal entry of Σ 1 ex ceeds the fir st diagonal entry of Σ 2 .
Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-7 Xmath Mod el Redu ction Modu le function matrix. Consider th e way th e associated impulse resp onse maps inputs defined over (– ∞ ,0] in L 2 into output s, and focus on the output over [0, ∞ ).
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-8 ni.com Further , the which is optimal for Hankel norm approxim ation also is optimal for this seco nd type o f approximat ion. In Xmath Han kel no rm approximat ion is achie ved with ophank( ) .
Chapte r 2 Additive Erro r Reduc tion © Nationa l Instrume nts Corpora tion 2-9 Xmath Mod el Redu ction Modu le of the balanced system occurs, ( assuming nsr is less than the number of states).
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-10 ni.com The actual ap proximati on error for discrete systems als o depends on frequenc y , and can be lar ge at ω = 0.
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-11 Xma th Model Re ductio n Module Related F unctions balance() , truncate() , redschur () , mreduce() truncate( ) SysR =.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-12 ni.com redschur( ) [SysR,HSV,slbig,srbig,VD,VA] = redschur(Sys,{nsr,bound}) The redschur( ) functi on us es a Sc hur m ethod (from Safonov a nd Chiang) t o calculate a reduced v ersion of a continu ous or dis crete system withou t balancin g.
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-13 Xma th Model Re ductio n Module Nex t, Schur decomposi tions of W c W o are formed with th e eigen v alues of W c W o in ascending and descending order .
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-14 ni.com For the d iscrete-time case: When {bound} is specif ied, the error bound jus t enunciated is use d to choose the nu mber of states in SysR so that the bound is satisfied and nsr is as small as possible.
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-15 Xma th Model Re ductio n Module Algorith m The algorithm do es the following. T he system Sys an d the reduced or der system SysR are stable; the system SysU h as all its poles in Re [ s ] > 0.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-16 ni.com By ab use of notatio n, when we say that G is r educed to a certain order, this correspon ds to the order of G r ( s ) alone; the uns table part of G u ( s ) of the approximation is mo st frequently thrown away .
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-17 Xma th Model Re ductio n Module Thus, the penalty for not being allo wed to include G u in the approximation is an increase in the er ror bound , b y σ n i + 1 + ... + σ ns .
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-18 ni.com being appro ximated by a stable G r ( s ) with the actual error (as opposed to just the er ror bou nd) satis fying: Note G r is optimal, that is, there is no other G r achie ving a lower b ound.
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-19 Xma th Model Re ductio n Module and f inally: These four matrices are the constituents o f the system matrix of , wher.
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-20 ni.com to choose the D matrix of G r ( s ), by splitting between G r ( s ) and G u ( s ). This is done by using a separate function ophiter( ) . Suppos e G u ( s ) is the un sta ble ou tput of stable( ) , a nd le t K ( s )= G u (– s ).
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-21 Xma th Model Re ductio n Module 2. Find a stab le order ns – 2 approxi mation G ns –2 of G ns –1 ( s ), with 3. (S tep ns–nr ) : Find a stable orde r nsr approximation of G nsr +1 , with Then, becaus e for , for , .
Chapter 2 Additive Error Red uction Xmath Model R eduction M odule 2-22 ni.com We u s e sysZ to den ote G(z) and def ine: bilinsys=makepoly([-1,a]/makepoly([1,a ]) as the mappin g from the z-domain to the s-domain. The specif ication is re vers ed because this fu nction uses b ackward poly nomial rotation.
Chapte r 2 Additive Erro r Reduc tion © Natio nal Instrum ents Cor poration 2-23 Xma th Model Re ductio n Module It follows by a result of [BoD87] th at the impulse response error for t >0 satisfies: Evidently , Hankel norm approx imation ensures some fo rm of approximat ion of th e impulse res ponse too.
© Nationa l Instrume nts Corpora tion 3-1 Xmath Mod el Redu ction Modu le 3 Multiplicative Error Reduction This chapter describes multiplicative error reductio n presenting two reasons to consider multiplicativ e rather than additive error reduction, one general and on e specific.
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-2 ni.com Multipl icative Robustness Re sult Suppose C stab ilizes , that has no j ω -axis pol es, and that G has the s ame number of poles in Re [ s ] ≥ 0 as . If for a ll ω, (3-1) then C stabilizes G .
Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-3 Xmath Mod el Redu ction Modu le bandwidth at the e xpense o f being lar ger out side this bandwidth, which would be preferable. Second, the previously used multiplicati ve error is .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-4 ni.com The objecti ve of the algorithm is to ap proximate a high-order stable transfer function matri x G ( s ) b y a lower -order G r ( s ) with either in v(g)(g-gr) or (g-gr)inv(g) minimi zed, under the condition t hat G r is stable and of the prescribed order .
Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-5 Xmath Mod el Redu ction Modu le These cases are secured with the keyw ords right and left , respecti v ely . If the wrong opt ion is req uested for a nonsq uare G ( s ) , an error message will result.
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-6 ni.com 2. W ith G ( s )= D + C ( sI – A ) –1 B and stable, with DD ´ nonsingul ar and G ( j ω ) G '(– j ω ) no.
Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-7 Xmath Mod el Redu ction Modu le strictly proper s table par t of θ ( s ) , as the square r oots of the eigen v alues of PQ . Call these q uantities ν i . The Schur decompositions are, where V A , V D are orthogonal and S asc , S des are upper tri angular .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-8 ni.com state-v ariable representation of G . In this case, the user is ef fectiv ely asking for G r = G .
Chapte r 3 Mult iplicative Erro r Reduction © Nationa l Instrume nts Corpora tion 3-9 Xmath Mod el Redu ction Modu le Hankel Singul ar Values of Phase Matrix of G r The ν i , i = 1 ,2,..., ns have been termed above the Hank el singular v alues of the phase matrix associated with G .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-10 ni.com which also can be rele vant i n find ing a redu ced order model of a plant. The procedure requires G again to be n onsingul ar at ω = ∞ , an d to ha v e no j ω -axis poles.
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-11 Xma th Model Re ductio n Module The v alues of G ( s ), as sho wn in Figure 3-2, al ong the j ω -axis are the same as the v alues o f around a circle with diameter def ined b y [ a – j 0, b –1 + j 0] on the positi ve real axis.
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-12 ni.com An y zero (or rank r eduction) o n the j ω -axis of G ( s ) becomes a zero (or rank reduction) in Re [ s ] > 0 o.
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-13 Xma th Model Re ductio n Module again with a bilinear transformation to secure multip licati ve approximat ions o ver a limited fr equenc y band.
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-14 ni.com There is one potential source of f ailure of th e algorithm. Because G ( s ) i s stable, certainly will be, as i ts poles wil l be in th e left half p lane circle on diameter .
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-15 Xma th Model Re ductio n Module The conceptual b asis of the algo rithm can best be g rasped b y considering the case of scalar G ( s ) o f de gree n .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-16 ni.com eigen v al ues of A – B/D * C with the aid of schur( ) . If an y real part of th e eigenvalues is less than eps , a war ning is displayed.
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-17 Xma th Model Re ductio n Module singu lar v alues of F ( s ) lar ger than 1– ε (ref er to step s 1 thro ugh 3 of the Restrictions section). The ma ximum order per mitted is t he number o f nonzero eigen values o f W c W o larger than ε .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-18 ni.com Note The e xpression is the strictly proper part of . The matrix is all pass; this property is not alway s secured in the multiv ariable case when ophank( ) is used to f ind a Hank el norm app roximation o f F ( s ).
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-19 Xma th Model Re ductio n Module • and stand in the s ame relation as W ( s ) and G ( s ), that is: – – W ith , there holds or – W ith there holds or – – is the stab le strictly proper part of .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-20 ni.com Error Bounds The error b ound formu la (Equation 3-3) is a simple consequence o f iterating (Equation 3-5). To illustrate, suppose there ar e three reductions →→ → , each by degree one.
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-21 Xma th Model Re ductio n Module For mulhank( ) , this translates for a scalar system into and The bound s are do uble for bst( ) .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-22 ni.com The v alues of G ( s ) along t he j ω -axis are the same as the v alues of around a circle with diameter d efined b y [ a – j 0, b –1 + j 0] on th e positi ve real axis (refer to Figure 3-2).
Chapte r 3 Mult iplicative Erro r Reduction © Natio nal Instrum ents Cor poration 3-23 Xma th Model Re ductio n Module The error will be ov erbounded by the error , and G r will contain the same zeros in Re [ s ] ≥ 0 a s G .
Chapter 3 Multiplicative Error Reduction Xmath Model R eduction M odule 3-24 ni.com Multiplicativ e approximation of (along the j ω -axis) corresp onds to multiplicat i ve appr oximatio n of G ( s ) around a circle in the r ight half plane, touching the j ω -axis at the origin.
© Nationa l Instrume nts Corpora tion 4-1 Xmath Mod el Redu ction Modu le 4 Frequency-W eighted Error Reduction This chapter descr ibes frequency-weighted error reduction problems. This includes a discuss ion of controller reduction and fractional repres entations.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-2 ni.com (so that ) is logical. Howe ver , a major use of weighting is in controll er reductio n, which i s no w descr ibed. Controller Red uction Frequency weighted error reducti on become s particul arly impor tant in reducing controller dimen sion.
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-3 Xmath Mod el Redu ction Modu le is minimized (and of course is less th an 1). Notice that these two error measures are like thos e of Equation 4-1 and Equation 4-2.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-4 ni.com Most of thes e ideas are discuss ed in [Enn84 ], [AnL89], and [AnM89]. The fun ction wt balance( ) implements weighted reduct ion, with fi v e choices of error measure, namely E IS , E OS , E M , E MS , and E 1 with arbitrary V( j ω ).
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-5 Xmath Mod el Redu ction Modu le Fractional R epresentatio ns The treatment of j ω -axis or right half plane poles in the above schemes is crude: they are simply co pied into the reduced order contro ller.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-6 ni.com • For m the redu ced controll er by intercon necting us ing ne gati v e feedback the secon d output of G r to the input, that is, set Nothing h as been sa id as to ho w shou ld be chosen— and the en d result of the reduction, C r ( s ), depends on .
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-7 Xmath Mod el Redu ction Modu le Matrix algebra shows that C ( s ) can be desc ribe d thr ough a left or righ t matrix fraction descr iption with D L , and related values, all stable transfer function matrices.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-8 ni.com The left MF D corresp onds to the setup of Figu re 4-3. Figu re 4-3 .
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Nationa l Instrume nts Corpora tion 4-9 Xmath Mod el Redu ction Modu le Figu re 4- 4. Redrawn; Indivi dual Sign al Paths as Vector Path s It is possible to verify that and according ly the output weig ht can be us ed in an error measure .
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-10 ni.com (Here, the W i and V i are submatr ices of W ,V .) Evidently , Some manipulation sh o ws that trying to preserve these identities after approximat ion of D L , N L or N R , D R suggests use of the err or measures and .
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-11 Xma th Model Re ductio n Module • Reduce the or der of a transfer fu nction matrix C ( s ) t hrough frequenc y-we ighted bala nced truncatio n, a stable frequenc y wei ght V ( s ) being prescribed.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-12 ni.com This rather crude ap proach to the han dling of the un stable part of a controll er is a v oided i n fracred( ) , whi ch provi des an alter nat iv e to wtbalance( ) for controller reduction, at least for an important family of contr oll ers.
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-13 Xma th Model Re ductio n Module 3. Comput e weighted Hankel Si ngular V alues σ i (d escribed in more detail later). If the order of C r ( s ) is not specif ied a p riori , it must be input at this time.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-14 ni.com and the observ ability grammian Q , defined in the obvious way , is written as It is trivial to ver ify that so that Q cc is the observability gramian of C s ( s ) alone, as well as a s ubmatrix of Q .
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-15 Xma th Model Re ductio n Module From these quantities th e transformation matrices used for calculatin g C .
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-16 ni.com 3. Only continuou s systems are accep ted; for discrete syst ems use makecontinuous( ) before call ing bst( ) , then discretize the result.
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-17 Xma th Model Re ductio n Module to, for e xample, throug h, for e xample, bala nced tru ncation, and then def ining: For the second rationale, consider Figure 4-5.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-18 ni.com Controller reduction proceeds b y implem enting the same connection rule bu t on reduce d v ersions of the tw o transfer function matrices.
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-19 Xma th Model Re ductio n Module 6. Check the stability of th e closed-loop syst em with C r ( s ). When the type="left perf" is specif ied, one w orks with (4-1 1) which is f ormed fr om the numerat or and deno minator of the MFD in Equation 4-5.
Chapter 4 Frequenc y-Weighted Error R eduction Xmath Model R eduction M odule 4-20 ni.com Additional Background A discussion of the stability robu stness measure can be found in [AnM89] and [LAL90]. The idea can be un derstood with reference to the transfer functions E ( s ) a nd E r ( s ) used in d iscussi ng type="right perf" .
Chapte r 4 Frequency -Weighted Erro r Reduc tion © Natio nal Instrum ents Cor poration 4-21 Xma th Model Re ductio n Module The four schemes all produce dif ferent HSVs; it follows that it may be prudent to try all four schemes for a particular controller reductio n.
© Nationa l Instrume nts Corpora tion 5-1 Xmath Mod el Redu ction Modu le 5 Utilities This chapter describes three utility fun ctions: hankelsv( ) , stable( ) , and compare( ) . The backgro und to hankelsv( ) , which calculates Hankel singular v alues, was pres ented in Chapter 1, Introd uction .
Chapte r 5 Utiliti es Xmath Model R eduction M odule 5-2 ni.com The grami an matrices are defi ned by solving the equat ions (in cont inuous time) and, in discrete time The computations are ef fected with lyapunov( ) and stability is checked, which is t ime-consumi ng.
Chapte r 5 Utili ties © Nationa l Instrume nts Corpora tion 5-3 Xmath Mod el Redu ction Modu le Doubtful ones are those for which the real part of the eigen v al ue has magnitude less than or equal t.
Chapte r 5 Utiliti es Xmath Model R eduction M odule 5-4 ni.com After this last transform ation, and with it follows that and By combini ng the transf ormation yi elding the real ordered Schur form for A with th e transfor mation def ined using X, th e ov erall tra nsform ation T is readily identif ied.
© Nationa l Instrume nts Corpora tion 6-1 Xmath Mod el Redu ction Modu le 6 T utorial This chapter illustrates a number of the MRM functio ns and their underly ing ideas. A plant and fu ll-ord er controll er are defi ned, and th en the effects of various red uction algo rith ms ar e examined.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-2 ni.com A minimal realization in modal coordinates is C ( sI – A ) –1 B where: The specifications seek high loop gain at low frequ encies (f or perfor mance) and low loop gain at high f requencies (to guar antee st ability in the presen ce of unstructured uncertainty).
Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-3 Xmath Mod el Redu ction Modu le With a state weightin g matrix, Q = 1e-3*diag([2,2,80,80,8,8,3,3]); R = 1; (and unity control weighting.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-4 ni.com recovery at low f requencies; there is consequ ently a faster roll-o ff of the loop gain at high f requencies than for , and this is desi red.
Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-5 Xmath Mod el Redu ction Modu le Controller Reduction This section contras ts the effect of u nweighted and weighted controller reduction. U nweighted reduct ion is at f irst examined, through redschur( ) (usi ng balance( ) or balmoore( ) will give similar results).
Chapter 6 T utoria l Xmath Model R eduction M odule 6-6 ni.com Figures 6-3, 6-4, and 6-5 displ ay the outcome o f the redu ction. The loo p gain is shown in Figure 6-3.
Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-7 Xmath Mod el Redu ction Modu le Gen erate Figu re 6- 4: compare(syscl,sysclr,w,{radians,type=5 }) f4=plot({keep,legend=["original","redu ced"]}) Figu re 6-4 .
Chapter 6 T utoria l Xmath Model R eduction M odule 6-8 ni.com Gen erate Figu re 6- 5: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f5=plot({keep,legend=["original","redu ced"]}) Figu re 6-5 .
Chap ter 6 T utoria l © Nationa l Instrume nts Corpora tion 6-9 Xmath Mod el Redu ction Modu le ophank( ) ophank( ) is next used to reduce the controller with the re sults shown in Figures 6 -6, 6-7, an d 6-8.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-10 ni.com Gen erate Figu re 6- 7: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f7=plot({keep,legend=["original","redu ced"]}) Figur e 6-7.
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-11 Xma th Model Re ductio n Module Gen erate Figu re 6- 8: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f8=plot({keep,legend=["original","redu ced"]}) Figur e 6-8.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-12 ni.com wtbalan ce The next comman d examined is wtbal ance with the option "match" . [syscr,ysclr,hsv] = wtbalance(sys,sysc ,"match",2) Recall that this command should p romote matching of clo sed-loop transfer functions.
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-13 Xma th Model Re ductio n Module The following fu nction calls produce Figur e 6-9: svalsrol = svplot(sys*syscr,w,{radians }) plot(sval.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-14 ni.com Gen erate Figu re 6- 10: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f10=plot({keep,legend=["original","red uced"]}) Figu re 6-1 0.
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-15 Xma th Model Re ductio n Module Gen erate Figu re 6- 11: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f11=plot({keep,legend=["original","red uced"]}) Figu re 6-11.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-16 ni.com Gen erate Figu re 6- 12: vtf=poly([-0.1,-10])/poly([-1,-1.4]) [,sysv]=check(vtf,{ss,convert}); svalsv = svplot(sysv,w,{radians}); Figu re 6-12 .
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-17 Xma th Model Re ductio n Module Gen erate Figu re 6- 13: [syscr,sysclr,hsv] = wtbalance(sys,sys c, "input spec",2,sysv) sval.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-18 ni.com Gen erate Figu re 6- 14: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f14=plot({keep,legend=["original","red uced"]}) Figu re 6-14 .
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-19 Xma th Model Re ductio n Module Gen erate Figu re 6- 15: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f15=plot({keep,legend=["original","red uced"]}) Figur e 6-15.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-20 ni.com fracred fracred , the next command examined, has f our options — "right stab" , "left stab" , "right perf " , and "left perf" . The optio ns "left stab" , "right perf" , and "left perf" all produce instability.
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-21 Xma th Model Re ductio n Module Gen erate Figu re 6- 17: syscl = feedback(sysol); sysolr=sys*syscr; sysclr=feedback(sysolr); compare(syscl,sysclr,w,{radians,type=5 }) f17=plot({keep,legend=["original","red uced"]}) Figu re 6-17.
Chapter 6 T utoria l Xmath Model R eduction M odule 6-22 ni.com Gen erate Figu re 6- 18: tvec=0:(140/99):140; compare(syscl,sysclr,tvec,{type=7}) f18=plot({keep,legend=["original","red uced"]}) Figur e 6-18. Step Response with fracre d The end result is comparable to that from wtbalance( ) with option "match" .
Chap ter 6 T utoria l © Natio nal Instrum ents Cor poration 6-23 Xma th Model Re ductio n Module hsvtable = [... "right stab:", string(hsvrs'); "left stab:", string(hsvls&apo.
© Nationa l Instrume nts Corpora tion A-1 Xmath Mod el Redu ction Modu le A Bibliography [AnJ] BDO Anderson and B. James, “ Algorithm for multiplicati v e approximation of a s table linear system, ” in preparation.
Appendix A Bibliogr aphy Xmath Model R eduction M odule A-2 ni.com [GrA90] M. Green an d BDO Anderson, “Gener alized balanced stochas tic truncation, ” Pr oceedings for 29th CDC , 1990. [Gre88] M. Green, “Balanced stochastic realization, ” Linear Alg ebra and Ap plications , V ol.
Appendix A Bibliography © Nationa l Instrume nts Corpora tion A-3 Xmath Mod el Redu ction Modu le [SaC88] M. G. Safono v and R. Y . Chiang , “Model redu ction for r ob ust control : a Schur relati v e-error m ethod, ” Pr oceedings for the American Contr ols Confer ence , 1988, pp.
Appendix A Bibliogr aphy Xmath Model R eduction M odule A-4 ni.com [Do y82] J. C. Doyle. “ Analysis of Feedback Systems with Struct ured Uncertainties. ” IEEE Pr oceedings , Nove mber 1982. [ D W S 8 2 ] J . C . D o y l e , J . E . Wa l l , a n d G .
Appendix A Bibliography © Nationa l Instrume nts Corpora tion A-5 Xmath Mod el Redu ction Modu le [SLH81] M. G. Safono v , A. J. Laub, and G. L. Hartman n, “Feedback Prop erties of Multi variable Systems: The R ole and Use of the Return Dif ference Matrix, ” IEEE T ransac tions on Automatic Contr ol , V ol.
© Nationa l Instrume nts Corpora tion B-1 Xmath Mod el Redu ction Modu le B T echnical Support and Professional Ser vices Visit the followin g sections of the Nationa l Instruments Web site at ni.com for technical suppor t and prof essional services: • Support — Online technical s upport resources at ni.
© Nationa l Instrume nts Corpora tion I-1 Xmath Mod el Redu ction Modu le Index Symbols *, 1-6 ´, 1-6 A additive error, reduction, 2-1 algorithm bala nced stocha stic trunc atio n (bst) , 3-4 fracti.
Index Xmath Model R eduction M odule I-2 ni.com G grammians controllability, 1- 7 desc ripti on of , 1-7 observability, 1- 7 H Hankel matrix, 1-9 Hankel no rm approxi mation, 2-6 Hankel si ngular valu.
Index © Nationa l Instrume nts Corpora tion I-3 Xmath Mod el Redu ction Modu le stable, 1 -5, 5-2 sup, 1-6 suppor t, technical, B -1 T technical support, B -1 tight equality bounds, 1-7 training and .
An important point after buying a device National Instruments 370755B-01 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought National Instruments 370755B-01 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data National Instruments 370755B-01 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, National Instruments 370755B-01 you will learn all the available features of the product, as well as information on its operation. The information that you get National Instruments 370755B-01 will certainly help you make a decision on the purchase.
If you already are a holder of National Instruments 370755B-01, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime National Instruments 370755B-01.
However, one of the most important roles played by the user manual is to help in solving problems with National Instruments 370755B-01. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device National Instruments 370755B-01 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center