Instruction/ maintenance manual of the product 2610 HP (Hewlett-Packard)
Go to page of 364
Adv anced T raffic Management Guide 261 0 261 0-PWR Pr oCurv e Switches R. 11.XX www .procurv e.com.
.
ProCurve Switch 2610 Series Switch 2610-PWR Series December 2007 Advanced T raffic Management Guide.
© Copyright 2007 Hewlett-Packar d Development Company, L.P . The information c ontained herein is subject to chan ge without notice. Publication Number 5991-8641 December 2007 Applicable Products Pro.
Contents Product Documentation Software Feature Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Getting Started Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiple VLAN Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Single-Forwa rding Database Operatio n . . . . . . . . . . . . . . . . . . . . 2-12 Example of an Unsup ported Configurat ion and How to Correct It . . . .
Per-Port Options fo r Dynamic VLAN Advertising and Joining . . . . . . 3- 8 GVRP and VLAN Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Port-Leave From a Dynamic VLAN . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Planning f or GVRP Ope ration .
Using the Switch as Querier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 Querier Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 Excluding Multicast Addresses from IP Mult icast Filtering .
How MSTP Operates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49 Regions, Legacy STP and RSTP Switches, and the Common Configuring Basic Port Connectivity Parameters MST Regions . . . . . . . . . . . . . . . . . .
Planning a QoS Co nfigurati on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 Prioritizin g and Monitor ing QoS Conf iguration Op tions . . . . . . 6-15 Policy Enforcement Engine . . . . . . . . . . . . . . . . . . . . . . . . . .
QoS Messages in the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-65 QoS Operating Notes and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66 7 IP Routing Features Contents . . . . . . .
Displaying IRDP Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 Configuring DHCP Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26 Overview . . . . . . . . . . . . . . . . . .
Operating Rules for Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Specific Rules . . . . . . . . . . . . . . . .
xii.
Product Documentation Note For the latest version of all ProCurve switch documentation, including release notes covering recently added features, visit the ProC urve Networking website at www .procurve.com . Click on T echnical support , and then c lick on Product manuals .
Product Documentation Software Feature Index For the software manual set supporting y our switch model, t he following feature index indicates wh ich manual to consult fo r information on a given software feature. (Note that some soft ware features are not supported on all switch models.
Product Documentation Feature Management and Configuration Advanced T raffic Management Access Security Guide File T ransfers X - - Friendly Port Names X GVRP - X - IGMP - X - Interface Access (T elne.
Product Documentation Feature Management and Configuration Advanced T raffic Management Access Security Guide Port-Based Access Control - - X Port-Based Priority (802.
Product Documentation Feature Management and Configuration Advanced T raffic Management Access Security Guide VLANs - X - W eb-based Authentication - - X Xmodem X - - xvii.
Product Documentation xviii.
1 Getting Started Contents Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Getting Started Introduction Introduction This Advanced T raffic Management Guide describes how to manage and configure advanced tr affic management features on your swit ch.
Getting Started Conventions ■ Braces within square brackets ( [ < > ] ) indicate a required element within an op tional choice. ■ Boldface indicat e s use of a CLI command , part of a CLI command syntax, or other displayed element in genera l text.
Getting Started Sources for More Information Port Identity Examples This guide describes software applicable to both chassis- based and stackable ProCurve switches. Where port identities are needed in an ex ample, this guide uses the chassis-based port id entity system, such as “A 1”, “B3 - B5”, “C7”, etc.
Getting Started Need Only a Quick Start? ■ For information on a specific comm and in the CLI, type the co mmand name follo wed by “h elp”. For example: Figure 1-3. Getting Help in the CLI ■ For information on specific featur es in the W eb browser interface, use the online help.
Getting Started Need Only a Quick Start? T o Set Up and In stall the Switch in Y our Network Important! Use the Installation and Getting Started Guide shippe d with your swit ch for the followin g: .
2 Static V irtual LANs (VLANs) Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Port-Based Virtual LANs (Static VLANs) . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Virtual LANs (VLANs) Contents Effect of VLANs on Other Sw itch Features . . . . . . . . . . . . . . . . . . . . . 2-38 Spanning Tree Op eration with VLANs . . . . . . . . . . . . . . . . . . . . . 2-38 IP Interfaces . . . . . . . . . . . . . . .
Static Virtual LANs (VLANs) Overview Overview This chapter describes h ow to configure an d use static, po rt-based VLANs on the switches covered by this manual.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Port-Based V irtual LANs (Static VLANs) VLAN Features Feature Default Menu CLI Web view existing VLANs n/a page 2-15 thru 2-21 page .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) General Use and Operation. Port-based VLANs are typically used to reduce broadcast traffic and to increas e security . A group of network users assigned to a VLAN forms a broadcast domain that i s separate from other VLANs that ma y be configured o n a sw itch.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) ProCurve Switch Figure 2-2. Example of Overlapping VLANs Usin g the Same Server Similarly , usin g 802.1Q-complia nt switches, you can connect mult iple VLANs through a single switch-to-sw itch link.
Non-802.1Q- compliant switch Switch Switch 2524 Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) ProCurve Switch ProCurve Switch Untagged VLAN Links T agged VLAN Link Figure 2-4.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) features and ensure that m ultiple instances of DHCP or Bootp on different VLANs do not result in confl icting configuration values for the swi tch. The primary VLAN is the VLAN the switch uses to run and manage these features and data.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Per -Port Static VLAN Configuration Options The followi ng figure and table show the options you have for assigning individual ports to a stat ic VLAN. Note that GVRP , if config ured, affects these options and VLAN b ehavior on the switch .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) General Steps for Using VLANs 1. Plan your VLAN strategy and create a map o f the logical to pology that wi ll result from configuring VLANs. Incl ude consideration fo r the interac tion between VLANs an d other fe atures such as Spanning T ree Protocol , load balancing, and IGMP .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) showing th e (differe nt) sour ce VLAN and source port . Other switch models have a single-forwarding database , which means they allow only one data- base entry of a unique MAC address, along with the source VLAN and source port on which it is found (see T able 2- 6).
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Series 2600/2600-PWR switches Multiple-Forwarding Databases* Single-Forwarding Database* Series 2510 switches *T o determine whether other vendors’ devices use single-forwarding or multiple-forwarding database architectures, refer to the documentation provided for those devices.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Switch 8000M VLAN 1 VLAN 2 Multiple-Forwarding Database Switch Routing Enabled (Same MAC address for all VLANs.) VLAN 1 VLAN 2 This switch has mult iple forwarding databa ses. This switch ha s a single forwarding database.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) The Solution. T o avoid the preceding problem, use only one cable or port trunk between th e single-forward ing and multiple -forwardin g database devices, and configure th e link with multiple, tagged VLANs.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) 2610 Swi tch VLAN 1 VLAN 2 Multiple-Forwarding Database Switch VLAN 1 VLAN 2 Both switches have multiple fo rwarding databases.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Figure 2-11. The Default VLAN Su pport Screen 2. Press [E] (for E dit ), then do one or more of the following: ■ T o change the maximum number o f VLANs, type the new number . (For the maximum number of VLANs allowed, refer to table 2-1 on page 2-4.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) An asterisk indicates you must reboot the switch to impl ement the new Maximum VLANs setting.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Default VLAN and VLAN ID Figure 2-13. The Defa ult VLAN Names Screen 2. Press [A] (for A dd ). Y ou will then be prompted for a new V L AN name and VLAN ID: 802.1Q VLAN ID : 1 Name : _ 3.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Example of a New VLAN and ID Figure 2-14. Example of VLAN Names Sc reen with a New VLAN Added 6.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) A port can be assigned to several VLANs, but only one of those assignments can be “Untagged”. Default: In this example, the “VLAN-22” has been defined, but no ports have yet been assigned to it.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Ports A4 and A 5 are assigned to both VLANs. Ports A6 and A7 are assigned onl y to VLAN-22.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) VLAN Commands Used in this S ection show vlans below show vlan < vlan-id > page 2-23 max-vlans page 2-26 primary-vlan < vla.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Displaying the Configuration for a Particular VLAN This comman d uses the VID to identify an d display the data for a specific static or dynamic VLAN. Syntax : show vlan < vlan-id > Figure 2-18.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Showing Port Details for VLANs The show vlan ports detail option al lows you to display VLAN memberships on a per -port ba sis when a ra nge of ports i s specified in the co mma nd.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) The follow examples illust rate the displayed output depend ing on whether the detail option is used.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Changing the Number of VLANs Allowed on the Switch By default, t he switch allo ws a maxi mum of 8 VLANs. Y ou can specify any value from 1 to th e upper limit f or the sw itch. (Refer to table 2-1 on page 2-4 .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Syntax : vlan < vlan-id > [name < name-str >] Creates a new static VLAN if a VLAN with that VID does not already exist, and places you in that VLAN’ s context level.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) For example, suppo se a dynamic VLAN with a VID of 125 exists on the switch. The following command converts the VLAN to a static VLAN.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) ProCurve(config)# vlan 100 name Blue_Team ProCurve(config)# vlan 100 tagged 1-5 T o move to the vlan 100 context le v el and execute.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) 802.1Q VLAN T agging VLAN tagging enabl e s traffic from more than one VLAN to use the sam e port. (Even when two or more VLANs use the same port they re main as separate domains and cannot receive traffic from each other without going through an external router .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) ■ In switch X: • VLANs assigned to ports X1 - X6 ca n all be untagged because there is only one VLAN assignment per port. Red VLAN traffic will go out only the Red ports; Green VLAN traf fic wi ll go out only the Green ports, and so on.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) VLAN tagging gives you several options: ■ Since the purp ose of VLAN taggin g is to allow multiple VLAN s on the same port, any port that has only one VLAN assigned to it can be configured as “Untagged” (the default).
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) The VLANs assigned to ports X3, X4, Y2, Y3, and Y4 can all be untagged because there is only one VLAN assigned per port. Port X1 has multiple VLANs assigned, which means that one VLAN a ssigned to this port can be untagged and any others must be tagged.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) The Secure Management VLAN Configures a secure Management VLAN by creating an isol ated network for managing the following ProCurve .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Links with Ports Belo nging to the Management VLAN and othe r VLANs Links Between Port s on a Hub and Ports belonging to the Manage .
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Figure 2-28. Example of Manage ment VLAN Control in a LAN T able 2-3. VLAN Membership in Figure 2-28 Switch A1 A3 A6 A7 B2 B4 B5 B9 C2 C3 C6 C8 Management VLAN (VID = 7) Y N N Y Y Y N N Y N N N M a r k e t i n g V L A N ( V I D = 1 2 ) N N N N N N N N N Y Y Y Shipping Dept.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Configuration Syntax : [ no ] m anagement-vlan < vlan-id | vlan-name > Default: Disabled T o confirm the Management VL AN configuration, use the show running-config command. For example, suppose you have al ready configured a VLAN name d My_VLAN with a VID of 100.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) ■ During a T elnet session to the switch, if you configure th e Ma nagement- VLAN to a VID that excludes the port thr ough which you are connected to the switch, you will continue to have access only until you terminate the session by logging ou t or rebooting the swit ch.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) links are in separate VLANs. However , you can use por t trunking to preven t Spanning T ree from unnecessarily bl ocking ports (and to improve overall network performance). Refer to “RSTP and STP Operation with 802.
Static Virtual LANs (VLANs) Port-Based Virtual LA Ns (Static VLANs) Port T runks When assigning a port trunk to a VLAN, all ports in the trunk are automatically assigned to the same VLAN.
3 GVRP Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GVRP Overview Overview This chapter describes GVRP and how to configure it with the sw itch’ s built- in interfaces, and assumes an understanding of VLANs, which ar e described in Chapter 2, “Static V irtual LANs (VLANs)”.
GVRP Introduction Introduction Feature Default Menu CL I We b view GVRP configuration n/a page 3-12 page 3-13 page 3-16 list static and dynamic VLANs n/a — page 3-15 page 3-16 on a GVRP-enabled swit.
GVRP Introduction General Operation When GVRP is enabled on a switch, the VID for any static VLANs configured on the switch is advertised (using BPDUs—Bridge Prot ocol Data Units) out all ports, regardless of whether a port is up or assigned to any p articular VLAN.
GVRP Introduction Note that if a static VLAN is configu r ed on at least one port of a switch, and that port has established a link wi th anot her device, then all other ports of that switch will send adve rtis ements for that VLAN.
GVRP Introduction ■ If the switch already has a static VLAN assignment with the same VID as in the advertisement, and the port is configured to Auto for that VLAN, then the port will dy namically jo in the VLAN and begin moving that VLAN’ s traffic.
GVRP Introduction T able 3-1. Options for Ha ndling “Unknown VLAN” Advertisem ents: Unknown VLAN Mode Operation Learn Enables the port to become a member of any unknown VLAN for which it (the Default) receives an advertisement. Allows the port to advertise other VLANs that have at least one other port on the same switch as a member .
GVRP Introduction Per -Port Options for Dyna mic VLAN Advertising and Joining Initiating Advertisements. As described in the pr eceding section, to enable dynamic joins, GV RP must be enabled and a port must be configured to Learn (the defaul t).
GVRP Introduction T able 3-2. Contro lling VLAN Behavio r on Ports wit h Static VLANs Per -Port “Unknown VLAN” (GVRP) Configuration Static VLAN Options—Per VLAN Specified on Each Port 1 Port Act.
GVRP Introduction As the preceding table indicates, when you enable GVRP , a port that has a T a gged or Untagged stati c VLAN has the option for both gene rating adve rtise- ments and dyna mically joinin g other VLANs. Note In table 3- 2, above, the Unknown VLAN parameters are configured on a per - port basis using the CLI.
GVRP Introduction Planning for GVRP Operation These steps outline the proc edure for setting up dynamic VLANs for a seg- ment. 1. Determine the VLAN topol ogy you want for each segm ent (broadcast domain) on your network. 2. Determine the VLANs that must be static and the VLANs that can be dynamically propagated.
GVRP Introduction Menu: Viewing and Configuring GVRP 1. From the Main Menu, select: 2. Switch Configuration . . . 8. VLAN Menu . . . 1. VLAN Support Figure 3-4. The VLAN Support Sc reen (Default Confi guration) 2. Do the f ollowing to enable GVRP and di splay the Unknown VLAN fields: a.
GVRP Introduction 3. Use the arrow keys to sel ect the port you want, and the Space ba r to select Unknown VLAN option for any po rts you want to change. 4. When you finish making config uration changes, press [Enter] , then [S] (for S ave ) to save your changes to the Startup-Config file.
GVRP Introduction This example i ncludes non-default settings for the Unknown VLAN field for some ports. Figure 3-7. Example of Show GVRP Listing w ith GVRP Enabled Enabling and Di sabling GVRP on th e Switch.
GVRP Introduction Figure 3-8. Example of Prevent ing Specific Ports from Joining Dyna mic VLANs Displaying the Static and Dyna mi c VLANs Active on the Switch.
GVRP Introduction Dynamic VLANs Learned from Switch “A” through Port 1 Figure 3-10. Example of Listing Showing Dynamic VLANs Converting a Dynamic VLAN to a Static VLAN.
GVRP Introduction GVRP Operating Notes ■ A dynamic VLAN must be co nverted to a static VLAN before it can have an IP address. ■ The total num ber of VLANs on the switch (st atic and dyna mic combine d) cannot exceed the current Maximum VL ANs setting.
GVRP Introduction 3-18.
4 Multimedia T raffic Control with IP Multicast (IGMP) Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 General Operation an d Features . . . . . . . . . . . . . . . . . .
Multimedia Traffic Contro l with IP Multicast (IGMP) Overview Overview This chapter desc ribes Multi media T raffi c Control with IP Mu lticast (IGMP) , and explains how to configure IGMP controls to re duce unnecessary bandwidth usage on a per -port basis.
Multimedia Traffic Control with IP Multicast (I GMP) General Operation and Features General Operation and Features IGMP Features Feature Default Menu CLI W eb view igmp configuration n/a — page 4-6 .
Multimedia Traffic Contro l with IP Multicast (IGMP) General Operation and Features Enabling IGMP allows detection of IGMP queries and report packets in order to manage IP mu lticast traffic th rough the switch . If no other querier is detected, the switch w ill then also func tion as the querier .
Multimedia Traffic Control with IP Multicast (I GMP) General Operation and Features IGMP Operating Features Basic Operation In the facto ry default co nfiguration, I G MP is disab led. If multiple VLANs are not configured, you mu st configure IGM P on the default VL AN (DEF AUL T_VLAN; VID = 1).
Multimedia Traffic Contro l with IP Multicast (IGMP) CLI: Configuring and Displaying IGMP Notes Whenever IGMP is enabled, the swit ch generates an Event Log message indicating whet her querie r functionality is enabled. IP multicast traffi c groups are i dentified by IP ad dresses in the range of 224.
Multimedia Traffic Control with IP Multicast (I GMP) CLI: Configuring and Displaying IGMP V iewing the Current IGMP Configuration . This command lists the IGMP configuration fo r all VLANs configured on the switch or for a specific VLAN. Syntax: show ip igmp config IGMP configuration for al l VLANs on the switch.
Multimedia Traffic Contro l with IP Multicast (IGMP) CLI: Configuring and Displaying IGMP IGMP Conf iguration for the Sele cted VLAN IGMP Configuration On the Individua l Ports in the VLAN Figure 4-2. Example Listing of IGMP Configuration for A Specifi c VLAN Enabling or Disabling IGMP on a VLAN.
Multimedia Traffic Control with IP Multicast (I GMP) CLI: Configuring and Displaying IGMP Y ou can also combine the ip igmp command with other IGMP-related commands, as described in the following sections. Configuring Per -Port IGMP Packet Control. Use this command in the VLAN contex t to specify ho w each port should handle IGMP traffic.
Multimedia Traffic Contro l with IP Multicast (IGMP) CLI: Configuring and Displaying IGMP Configuring IGMP T raffic Priority . This command allows you to prioritize IGMP traffic as eit her “high” or “normal” (the default ). Syntax : [ no] vlan < vid > ip igmp high-p riority-forward Assigns “high” priority to IGMP traffic.
Multimedia Traffic Control with IP Multicast (I GMP) Web: Enabling or Disabling IGMP W eb: Enabling or Disabling IGMP In the web browser interface you can e n able or disable IGMP on a per -VLAN basis. T o configure other IGMP features , telnet to the swit ch console and use the CLI.
Multimedia Traffic Contro l with IP Multicast (IGMP) How IGMP Operates assume this function in order to elic it group membership informatio n from the hosts on the netw ork. (If you need to disable the querier feat ure, you can do so through the CLI, usin g the IGMP configuration MIB.
Multimedia Traffic Control with IP Multicast (I GMP) How IGMP Operates Supported Standards and RFCs ProCurve’ s implementation of IGMP support s the following standards and operating capabilities: • RFC2236 (IGMP V .2, with backwards support for IGMP V .
Multimedia Traffic Contro l with IP Multicast (IGMP) How IGMP Operates T able 4-1.Comparison of IGMP Ope ration With and Without I P Addressing IGMP Function Av ailabl e With IP Addressing Configured .
Multimedia Traffic Control with IP Multicast (I GMP) How IGMP Operates 4-2.Switches Supporte d for IGMP Features Switch Model Data- IGMP Fast- Default IGMP Behavior or Series Driven Leave Setting IGMP.
Multimedia Traffic Contro l with IP Multicast (IGMP) How IGMP Operates Querier's processing of that Leave. For more on this topic, refer to “Forced Fast-Leave IGMP” on page 4-17.
Multimedia Traffic Control with IP Multicast (I GMP) How IGMP Operates does not wait for the actual Querie r to verify that there are no other group members on port A3. If the switch itself is the Querier, it does n ot query port A3 for the presence of other group members.
Multimedia Traffic Contro l with IP Multicast (IGMP) How IGMP Operates “X” member on that port. If the port does not rece ive a join reques t for that group within the forced-leave interval, the switch the n blocks any further group “X” traffic to the port.
Multimedia Traffic Control with IP Multicast (I GMP) How IGMP Operates Note on VLAN Numbers In the ProCurve switches co vered in this guide, the walkmib and setm ib commands use an internal VLAN number (and n ot the VLAN ID, or V ID) to display or change many per -vlan features , such as the Forced Fast-Leave state.
Multimedia Traffic Contro l with IP Multicast (IGMP) How IGMP Operates T o List the Forced Fast-Leave State for a Single Port. (See the “Note on VLAN Numbers” on page 4-19.) Go to the switch ’ s c omm and prompt and use the getmib command, as shown below .
Multimedia Traffic Control with IP Multicast (I GMP) How IGMP Operates Syntax : setmib hpSwitchIgmpPortForced LeaveState.< vlan numbe r > < .port number > -i < 1 | 2 > - OR - setmib 1.3.6.1.4.1.11.2.14.11.5.1.7.1.15.3.1.5.< vlan number > < .
Multimedia Traffic Contro l with IP Multicast (IGMP) Using the Switch as Querier Using the Switch as Querier Querier Operation The function of the IGMP Queri e r is to poll other IGMP-enabled devi ces in an IGMP-enabled VL AN to elicit group memb ership informat ion.
Multimedia Traffic Control with IP Multicast (I GMP) Excluding Multicast Addresses from IP M ulticast Filtering Excluding Multicast Addresses from IP Multicast Filtering Each multicast host group is identified by a single IP ad dress in the range of 224.
Multimedia Traffic Contro l with IP Multicast (IGMP) Excluding Multicast Addresses fr om IP Multicast Filtering 4-24.
5 Spanning-T ree Operation Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 The RSTP (802.1w) and STP (802.1D) Spanni ng Tree Options . . . . . . . . . 5-7 RSTP (802.1w) .
Spanning-Tree Operation Contents How MSTP Operates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49 Regions, Legacy STP and RSTP Swit ches, and the Common Spanning Configuring Basic Port Connectivity Parameters MST Regions .
Spanning-Tree Operation Overview Overview This chapter describes the operation of the Spanning T ree Protocol (STP) and how to configure it wit h the switches’ built-in i nterfaces. T able 5-1. STP Support Spanning T ree Protocol 2610 26 10-PWR 802.
Spanning-Tree Operation Overview 802.1w Spanning T ree Protocol Default Menu CLI We b Reconfiguring Whole- Switch V alues Reconfiguring Per -Port V alues Protocol V ersion: RSTP Force V ersion: RSTP-o.
Spanning-Tree Operation Overview W ithout spanning tree, having more than one acti ve path between a pair of nodes causes loops in the net w ork, which can result in duplication of mes- sages, leading to a “broadcast storm” that can bring down the network.
Spanning-Tree Operation Overview The logical an d physical topologies resu lting from thes e VLAN/Instance groupings result in blocking on d ifferent l inks for di fferent VLANs: Switch “C” Instan.
Spanning-Tree Operation The RSTP (802.1w) and STP (802 .1D) Spanning Tree Options Note for 8 02.1 D and 802.1w Spann ing-Tree Operation Y ou should enable sp anning tree operat ion in any switch that is part of a redundant physical li nk (loop topology).
Spanning-Tree Operation The RSTP (802.1w) and STP (802.1D) Spanning Tree Options RSTP (802.1w) The IEEE 802.1D version of spanning tree (S TP) can take a fairly long time to resolve all the possible pa ths and to select the most effic ient path through the network.
Spanning-Tree Operation The RSTP (802.1w) and STP (802 .1D) Spanning Tree Options How STP and RSTP Operate The switch automatically senses port identity and type, and automaticall y defines span ning-tree paramet ers for ea ch type, as well as parameters that apply across the switch.
Spanning-Tree Operation The RSTP (802.1w) and STP (802.1D) Spanning Tree Options dant links by using a p ort trunk. The following example shows how you can use a por t trunk with 802.1Q (tagged) VLANs and sp anning tree wi thout unnecessarily blocking any li nks or losing any bandwidth.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Configuring Rapid Reconfiguration Spanning T ree (RSTP) This section describes the operation of the IEEE 802.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) T ransitioning from STP to RSTP IEEE 802.1w RSTP is designed to be co mpatible wi th IEEE 802.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Configuring RSTP The default switch configuration has spanning tree disabled w i th RSTP as the selected protocol . That is, when spanni ng tree is enabled, RSTP is the version of spanning tree that i s enabled, b y default.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) CLI: Configuring RSTP Spanning T ree Commands in This Section STP RSTP Page for RSTP Use show spanning-tree config Y Y B.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Figure 5-4. Exa mple of the Spanning T ree Configuration Display Enabling or Disabling RSTP. Issuing the command to enable spanning tree on the swit ch implements, by default, the RSTP ver sion of spanning tree for all physical ports on the swi t ch.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) Reconfiguring Whole-Swi tch Spanning T ree V alues. Y ou can configure one or more of the following paramete rs, which affect the spanning tree operation of the whole switch: T able 5-1.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Note Executing the spanning-t ree command alone enables sp anning tree. Execu ting the command with one or mo re of the w.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) Reconfiguring Per -Port Spanning T ree V alues. Y ou can configure one or more of the fol lowing parameters, which affect th e spanning tree operation of the specified po rts only: T able 5-2.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Syntax: Abbreviations: spanning-tree [ethernet] < port-list > span < port-list > path-cost < 1 - 200000000.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) Menu: Configuring RSTP 1. From the console CLI prom pt, enter the menu command. ProCurve# menu 2. From the switch console Main Menu, select 2. Switch Configuration … 4. Spanning T ree Op eration 3.
Spanning-Tree Operation Configuring Rapid Reconfiguration Spanning Tree (RSTP) Figure 5-5. Exa mple of the RSTP Configura tion Screen 7. Press the [T ab] key or use th e arrow keys to go to the next parameter you want to change, then type in the new value or press the Space bar to select a value.
Spanning-Tree Operation Configuring Rapid Reconfigur ation Spanning Tree (RSTP) W eb: Enabling or Disabling RSTP In the web browser interface, you can en able or disable spanning tree on the switch.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) 802.1D Spanning-T ree Protocol (STP) Menu: Configuring 802.1D STP 1. From the Main Menu, sele ct: 2. Switch Configuration … 4. Spanning T ree Op eration Use this field to sel ect the 802.1D version of STP .
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Use this field to enable spanning tree. Read-Only Fiel ds Figure 5-7. Ena bling Spanning-T ree Ope ration 6. If the remain ing STP pa rameter settings are a dequate fo r your netw ork, go to step 10.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Figure 5-8. The Configu ration Menu Indicating a Reboot Is Need ed to Implement a Configuration Change 11. Pre ss [0] to return to the Main m enu. Figure 5-9. The Main Menu Indicating a Rebo ot Is Needed T o I mplement a Configuration Change 12.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) CLI: Configuring 802.1D STP STP Commands Used in This Section show spanning-tree config Below spanning-tree protocol-version page 5-27 forwa.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Configuring the Switch T o Use the 802.1D Spanning T ree Protocol (STP). In the default confi guration, the swit ch is set to RSTP (that is, 802.1w Rapid Spanning T ree), and spanning tree operat ion is disabled.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Enabling STP implem ents the spanning tree protocol for all physical ports on the switch, regardless of whether mult iple VLANs are configu red. Disabling STP removes protection against redundant loops that can significantly slow or halt a network.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Note Executing spanning-tree alone enables STP . Executin g spanning-tree with one or more of the above “STP Operat ing Pa rameters” does not enable STP . It only configures the STP parameters (regardl ess of whether STP is actually running (enabled) on the switch ).
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Y ou can also include STP general para meters in this command. See “Recon- figuring Genera l STP Operation on the Switch” on page 5-28.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) T o Enable or Disable Fast Mode for a Switch Port: Y ou can use either the CLI or the menu in terface to to ggle between STP Fast mode and STP Normal mode. (T o use the menu interf ace, see “Menu: Configuring 802.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Caution In general, fast-uplink span ning tree on the switch is useful when runn ing STP in a tiered topology that has well-define d edge sw itches. Also, ensure that an interior switch is used for the root switch and for any lo gical backup root switches.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) T erminology Te r m Definition downlink port A switch port that is linked to a port on anot her switch (o r to an end node) that is sequentially (downstream port) further away from the STP root device.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) In figure 5-13, STP is enabled and i n its default configur ation on all switches, unless otherwise indicated in table 5-5, below: T able 5-5.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) ■ Edge switches cannot be directly link ed together using fast-uplink po rts. For example, the connecti on between sw itches 4 and 5 in figure 5-14 is not allowe d for fast-u plink operat ion.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) T o V iew and/or Configure Fast-Uplink STP . This procedure uses the Spanning T ree Operation scree n to enab le STP and to se t the Mode for fast - uplink STP op eration. 1. From the Main Menu sel ect: 2.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) 3. If the Protocol V ersion is set to RSTP (as shown in figure 5-15), do the following: a. Press [E] ( E dit ) to move the cursor to the Protocol Version field . b. Press the Space bar once to change the Protocol V ersion fiel d to STP .
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) In this example, ports 2 and 3 have already been co nfigured as a port trunk ( Tr k 1 ), which app ears at the end of the port listing. All ports (a nd the trunk) are i n their default STP configur ation.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) STP is enabled. Port A1 and T rk1 are now configured for fast-uplink STP . Figure 5-18. Exampl e of STP Enabled with T wo Red undant Links Configured for Fast-Uplink STP 5. Press [S] (for S ave ) to save the configuration changes to flash (non-vol atile) memory .
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Indicates which uplink is the active path to the STP root device. Note: A switch using fast-uplink STP must never be the STP root device. Figure 5-19. Exampl e of STP Status with T rk1 (T runk 1) as the Path to th e STP Root Device 2.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) In figure 5-20: • Port A1 an d T rk1 (trunk 1; formed from ports 2 and 3) are redundant fast-uplink STP links, with trunk 1 for w arding (the active l ink) and port A1 blocking (th e backup link).
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Redundant STP link in the Forwardin g state. (See the “Root Port field, ab ove. This is t he currently active path to the STP root device .) Indicates that T rk1 (T runk 1) provides the curren tly active path to the STP root de vice.
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Fast-Uplink STP Configured on Port 1 and T runk 1 (T rk1) STP Enabled on the Switch Figure 5-23. Exampl e of a Configuration Supp orting the STP T opolog y Shown in Figure 5-21 Using the CLI T o Configure Fast-Uplink STP .
Spanning-Tree Operation 802.1D Spanning-Tree Protocol (STP) Lists STP configuration. Shows the default STP protocol 1. Changes the Spanning-T ree protocol to STP (required for Fast-Uplink). 2. Saves the change to the startup-configuration 3. Reboots the switch.
Spanning-Tree Operation Web: Enabling or Disabling STP Note When you add a port to a trunk, the port t akes on the STP mo de configured for the trunk, regardless of which STP m ode was configured on the port before it was added to the trunk.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) 802.1s Multiple Spanning T ree Protocol (MSTP) The 802.1D and 802.1w spanning tree protocols operate wi thout regard to a network’ s VLAN configuration, and maintain one common spanning tree throughout a bridged network.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) MSTP Structure MSTP map s active, separate paths th r ough separate spanning tree instances and between MST regions. Each MST region comprises one or more MSTP switches. Note that MSTP recognizes an STP or RSTP LAN as a distinct spanning-tree region.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) MST Region: An MST region comprises the VL ANs conf igured on physically connected MSTP switches. All switches in a given regio n must be configured with the sam e VLANs and Multiple Spanning T ree Instances (MSTIs).
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Caution When you enable MSTP on the switch, the default MSTP sp anning tree configuration settings comply with the values recommended in the IEEE 802.1s Multiple Spanni ng T ree Protocol (MSTP) standard.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) How Separate Instances Affect MSTP Operation. Assigning different groups of VLANs to different instances ensures that those VLAN groups use independen t forwarding pa ths. For exam pl e, in figure 5-26 eac h instance has a different forwa rding path.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) W ithin a region, traffic ro uted between VLANs i n separate instances can take only one physical path. T o ensure that traffic in all VLANs within a region can travel between regions, all of the boundary ports for each region should belong to all VLANs configured in the region.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) an instance by using a port trunk. Th e followin g example shows how you can use a port trunk with 802.1Q (tagged) V LANs and MSTP w ithout unne cessarily blocking any links o r losing a ny bandwid th.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) and designated port for each region. Th e CIST includes the Common Spanning T ree (CST), the Internal Spanning T r ee (IST) within each region, and any multiple spanni ng-tree instan ces (MSTIs) in a region.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Operating Rules ■ All switches in a region must be conf igured with the same set of VLANs, as well as the same MST configur ation name and MST configu ration number .
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) the same instance, all but one of thos e paths will be blocked for th at instance. However , if there are differen t paths in different instanc es, all such paths are available for traffic.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) incompatibility between devices runn ing the older 802.1D STP and your switch runnin g MSTP or RSTP . Please see the “Note on Path Cost” on page 5-19 for more inform ation on adjustin g to this incomp atibility .
Note on MSTP Rapid State T ransitions Note Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Under some circumstances th e rapid state transitions employ ed by MSTP (and RSTP) can increa se the rates of fram e duplicati on and misorderin g in the switched LAN.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) – Force-V ersion operation spanning-tree force-versi on – F o r w a r d D e l a y spanning-tree forwa rd-delay – Hello T ime (used if the switch opera tes as the root device.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Configuring MSTP Operat ion Mode and Global Parameters Command Page spanning-tree protocol-version mstp page 5-60 spanning-tree co.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Note Syntax: spanning-tree-protoc ol-version mstp Changes the current spanning-tree prot ocol on the switch to 802.1s Multiple Spanning T ree. Must be followed by write mem and reboot to activate the change.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree c onfig-revision < revision-number > This command configures the re vision number you designate for the MST region in which yo u want the switch to reside.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree f orce-version < stp-compat ible | rstp-operation | mstp- operation > Sets the spanning-t ree compatibility mode.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Configuring Basic Port Connectivity Parameters Command Page spanning-tree < port-list > edge-port below spanning-tree mcheck below hello-time < global | 1.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) [ mcheck ] Forces a port to send RSTP BP DUs for 3 seconds. This allows for another switch connected to the port and running RSTP to establish its connection quickly and for identifying switches running 802.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) [ path-cost < auto | 1..200000000 > ] Assigns an individual port co st that the switch uses to determine which ports are fo rwarding ports in a given spanning tree.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree < port-list > root-guard MSTP only . When a port is enabled as root-guard , it cannot be selected as the root port ev en if it receives superior STP BPDUs.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree in stance < 1..16 > priority < 0 .. 15 > This command sets the switch (b ridge) priority for the desig- nated instance.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree p riority < 0 .. 15 > This command sets the switch (bridge) priority for the designated region in which th e switch resides.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Configuring MST Instance Per -Port Parameters Command Page spanning-tree instance < 1..16 > < port-list > path-cost < auto | 1..2000000 00 > page 5-69 spanning-tree instance < 1.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning -tree instance < 1..16 > [e] < port-list > priorit y < priority-multiplier > This command sets the priority for the specified port(s) in the specified MST instance.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Syntax: spanning-tree [ e] < port-list > priority < priority-multiplier > This command sets the priority for the specified port(s) for the IST (that is, Instance 0) of the region in wh ich the switch resides.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Enabling or Disabling Sp anning T ree Operation This command enables or disables span ning tree operation for any spanning tree protocol ena bled on the switc h. Before using this comm and to enable spanning tree, ensure that the version yo u want to use is active on the sw itch.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) 1. Configure the VLANs you want incl uded in any instances in the new region. When you create the pendi ng region, all VLANs configured on the switch will be assigned to the pend ing IST instance unless assigned to other , pending MST instances.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) 9. T o view the current pending MSTP configu ration, use the show spanning- tree pending command (page page 5-80). Displaying MSTP Statis tics and Configuration Command Page MSTP Statistics: show spanning-tree [< port-list >] below show spanning-tree inst ance < ist | 1.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Switch’ s Spannin g T ree Confi guration and Identity of VLANs Co nfigured in the Switch for the IST Instance Lists the switch’ s MSTP root data for connectivity with other re gions and STP or RSTP devices.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Displaying Switch Statistics for a Specific MST Instance. Syntax: show spann ing-tree instance < ist | 1..16 > This command displays the M STP statistics for either the IST instance or a numbered MST inst ance running on the switch.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Displaying the MSTP Configuration Displaying the Global M STP Configu ration. This command displays the switch’ s basic and MST region spanning -tree configuration, including basic port connectivity settings.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Displaying Per -Instance MSTP Configurations. These commands dis- plays the per -instance port configurat ion and current state, along with instance iden tifiers and regional root data.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Displaying the Region-Level Configurati on in Brief. This com mand output is useful for quickly verifying the allocation of VLAN s in the switch’ s MSTP configurat ion and for viewing th e configured region identifiers.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Displaying the Pending MSTP Configuration. This command displays the MSTP config uration the switch will implement if you execute .
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) Operating Notes SNMP MIB Support for MSTP . MSTP is a superset of the STP/802. 1D and RSTP/802.1w protocols and uses the MIB objects defined for these two protocols. T roubleshooting Duplicate packets on a VLAN, or packets not arriving on a LAN at all.
Spanning-Tree Operation 802.1s Multiple Spanning Tree Protocol (MSTP) 5-82.
6 Quality of Service (QoS): Managing Bandwidth More Effectively Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Terminology . . . . . . . . . . . . . . . . . . . . . . . .
Quality of Service (QoS ): Managing Bandwidth More Effectively Contents QoS IP Type-of- Service (ToS ) Policy and Prio rity . . . . . . . . . . . . . .
Quality of Service (Q oS): Managing Bandwidth More Effectively Introduction Introduction QoS Feature Default Menu CLI Web TCP/UDP Priority Disabled — page 6-21 Refer to the Online Help.
Quality of Service (QoS ): Managing Bandwidth More Effectively Introduction Quality of Service is a genera l term fo r classifying and priori tizing traffic throughout a network. That is, QoS enables you to establish an end-t o-end traffic priority po licy to improv e control and t hroughput of i mportant data .
Quality of Service (Q oS): Managing Bandwidth More Effectively Introduction QoS is implemented in the fo rm of rules or policies th at are configured on the switch. While you can use QoS to pr ioritize only the outbound traff ic while it is moving thro ugh the switch, you der i ve the maximum benef it by using QoS in an 802.
Quality of Service (QoS ): Managing Bandwidth More Effectively Introduction T erminology Te r m Use in This Document 802.1p priority A traffic priority setting carried by a VLAN-tagged packet moving from one device to another through ports that are tagged members of the VLAN to wh ich the packet belongs.
Quality of Service (Q oS): Managing Bandwidth More Effectively Introduction Te r m Use in This Document outbound port For any port, a buffer that holds outbound traffic unti l it can leave the switch through that port. There queue are four outbound queues for each port in the switch: high, medium, normal, and low .
Quality of Service (QoS ): Managing Bandwidth More Effectively Introduction ■ Configuring a priority for outbo und packets and a service (prior- ity) policy for use by do wnstream devices: • DSCP Policy: This feature enables you to set a priority policy in outbound IP packets.
Quality of Service (Q oS): Managing Bandwidth More Effectively Introduction But if the packet is in a VLAN-tagged environment, then the a bove setting is also added to the packet as an 802.1p priority for use by downstre am devices and applications (shown in ta ble 6-3).
Quality of Service (QoS ): Managing Bandwidth More Effectively Introduction T able 6-4. Switch Cl assifier Search Order and Prec edence Search Order Precedence QoS Classifier 1 6 (lowest) Incoming 802.
1 2 Quality of Service (Q oS): Managing Bandwidth More Effectively Introduction T able 6-5.Precedence Criteria for QoS Classifiers Precedence Criteria Overview UDP/TCP T akes precedence based on a layer 4 UDP or T CP application, with a user -specified application port number (for example, T elnet).
6 Quality of Service (QoS ): Managing Bandwidth More Effectively Introduction Precedence Criteria Overview Incoming Where a VLAN-tagged packet enters the switch thr ough a port that is a tagged member of that 802.1p VLAN, if QoS is not configured to override the pa cket’ s priority setting, the switch uses the Priority packet’ s existing 802.
Quality of Service (Q oS): Managing Bandwidth More Effectively Preparation for Configuring QoS Preparation for Configuring QoS QoS operates in VLAN-tagged and VL AN-untagged environments. If your network does no t use multiple VLAN s, you can still impl ement the 80 2.
Quality of Service (QoS ): Managing Bandwidth More Effectively Preparation for Configuring QoS For more on how QoS operates with the preceding traffic types, see ‘ ‘Pre cedence Criteria for QoS Classi fiers’ ’, on page 6-11.) 2. Select the QoS option you want t o use.
Quality of Service (Q oS): Managing Bandwidth More Effectively Preparation for Configuring QoS Planning a QoS Configuration QoS uses resources in a way that requ ires attention to rule usage when planning a QoS configurat ion.
Quality of Service (QoS ): Managing Bandwidth More Effectively Preparation for Configuring QoS T oS Diff-Services QoS Up to 64 rules per switch, depending on how the switch is configured QoS Classifier Rules Used VLAN QoS 1 rule per port membership in a QoS-spe cified VLAN.
Quality of Service (Q oS): Managing Bandwidth More Effectively Preparation for Configuring QoS Configuring a Pol icy When There Ar e Not Enough Rule s A vailable. Attempting to confi gure a QoS policy on the switch or a VLAN when there are not enough rules available results in the following: ■ The policy is not config ured.
Quality of Service (QoS ): Managing Bandwidth More Effectively Preparation for Configuring QoS 2. Use the show qos comman ds to identify the curre ntly configured QoS policies. 3. Determine which of the exi sting poli cies you can remove to free up rule resources for the QoS polic y you want to implement.
Quality of Service (Q oS): Managing Bandwidth More Effectively Preparation for Configuring QoS How the Switch Uses Resources in DSCP Configurations. In the default config uration, the DSCP map is conf.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Using QoS Classifiers T o Configure QoS for Outbound T raffic QoS Feature Default Menu CLI Web UDP/TCP Priority Disabled — page 6-21 Refer to Online Help.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic vlan-priority Displays the current VLAN priority configuration. Refer to figure 6-23 on page 6- 48. port-priority Displays the current so urce-port priority configuration.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Options for Assigning Priority . Priority control options for TCP or UDP packets carrying a specified TC P or UDP port number include: ■ 802.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic no qos < udp-port | tc p-port > < tcp-udp port num ber > Deletes the specified UDP or TCP port number as a QoS classifier .
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Assigning a DSCP Policy Base d on TCP or UDP Port Number This option assigns a previously configured DSCP pol icy (codepoint and 802.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Note A codepoint must have an 802.1p priority assignment (0 - 7) before you can configure a policy for prioritizing packet s by TCP or UDP port numbers.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic For exampl e, suppose you wanted to assi gn these DSCP policies to the packet.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic DSCP Policies Configured i n this Step Figure 6-8. Assign Prior ities to the Selecte d DSCPs 3. Assig n the DSCP policies to the se lected UDP/TCP port applica tions and display the result.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic QoS IP-Device Priority QoS Classifier Precedence: 2 The IP device option, whi ch applies only to IPv4 packets, uses tw o rules per IP address on all ports in the switch .
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Assigning a Priority Based on IP Address This option assigns an 802 .1 p pr iority to all IPv4 p ackets having the specified IP address as either a sour ce or destin ation.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Figure 6-10. Example of Configuring and Listing 802.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic 2. Determine the DSCP policy for packet s carrying the selected IP address: a. Determine the DSCP you want to assi gn to the selected packets.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic no qos device-priority < ip-address > Deletes the specified IP address as a QoS classifier . show qos device-priority Displays a listing of all Qo S Device Priority classifiers currently in the running-config file.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic 2. Configure the priorities fo r the DSCPs you want to u se. DSCP Policies Configured in this ste p. Figure 6-12. Assigning 802.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic QoS IP T ype-of-Service (T oS) Policy and Priority QoS Classifier Precedence:.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Assigning an 802.1p Priority to IPv4 Packets on the Basis of the T oS Preced.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic T o replace this option with the T o S diff-services option, just configure diff- services as described below , which au toma ticall y disables IP-Precedence.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Note on DSCP Use Different appl ications may use the same DSCP in th eir IP packets. Also, the same application may u se multiple DSCPs if the ap plication origina tes on different clients, servers, or other de vices.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic . Syntax: qos type-of-service diff-services < codepoint > Causes the switch to read the < codep oint > ( DSCP) of an incoming IPv4 packet and, when a match occurs, assign a corresponding 802.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Executing this co mmand display s the current T oS configuration and sh ows that the selected DSCP is not curre ntly in use. The 000110 codepoint is unused, and thus availab le for directly assigning an 802.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Assigning a DSCP Policy on the Basis of the DSCP in IPv4 Packets Received from Upstream Devices The preceding section describes how to forw ard a policy set by an edge (or upstream ) switch.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic no qos type-of-service Disables all T oS classifier op eration. Current T oS DSCP policies and priorities remain in the configuration and will become available if you re- enable T oS diff-services.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic The DSCPs f or this example have not yet been assi gned an 802.1p priority level. Figure 6-18. Display the Cu rrent DSCP-Map Configuration 2.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic The specified DSCP policies overwrite the original DSCPs on the selected packets, and use the 802.1p priorities previously configur ed in the DSCP policies in step 2.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic b. Configure the switch to mark a specific type of inbound traffic with that DSCP (and thus create a policy for that traffic type).
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic T able 6-9. How the Sw itch Uses the T oS Configuration Outbound Port T oS O.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic QoS VLAN-ID (VID) Priority QoS Classifier Precedence: 5 The QoS VLAN-ID opti on supports up to 120 VLAN IDs (VIDs) as QoS classifiers, depending on rule use by other QoS op tions.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Syntax: vlan < vid > qos priority < 0 - 7 > Configures an 802.1p priori ty for outbound packets belonging to the specified VLA N.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Figure 6-23. Configuring and Disp laying QoS Priorities on VLANs If you then decided to remove VLAN_20 f rom QoS prioritization.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Note On switches covered in this guide, “mixing” T oS DSCP polici es and 802.1p priorities is not recommended. Refer to the Note on page 6-10.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Syntax: vlan < vid > qos dscp < codep oint > Assigns a DSCP policy to packe ts carrying the specified IP address, and overwrites the DSCP in these packets with the assigned < codepoint > value.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic 2. Configure the priorities fo r the DSCPs you w ant to use. Priorities Configured in this ste p. Figure 6-26. Assign Priori ties to the Selecte d DSCPs 3.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic QoS Source-Port Priority QoS Classifier Precedence: 6 The QoS source-port opti on enables you to use a packet’ s source-port on the switch as a QoS classifier .
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic For example, suppose that you want to prioritize inbound traffic on the following source-ports: Source-Port Priority 1 - 3 2 4 3 5, 8 5 9 - 11 6 1.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Assigning a DSCP Policy Based on the Source-Port This option assigns a previously configured DSCP pol icy (codepoint and 802.1p priority) t o outbound IP packet s (received from the specified source- ports).
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Note A codepoint must have an 802.1p priority assignment (0 - 7) before you can configure that codepo int as a criteria for prioriti zing packets by source-port.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic For example, suppose you wanted to assign this set of priorities: Source-Port DSCP Priori ty 2 000111 7 5 - 7 000101 5 8, 10 000010 1 1.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Priorities Configured in this step. Figure 6-31. Assign Priori ties to the Selecte d DSCPs 3. Assig n the DSCP policies to the selected source-ports and display the result.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Differentiated Services Codepoint (DSCP) Mapping The DSCP Policy T able associates an 802.1p priority with a specific T oS byte codepoint in an IPv4 packet.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic T able 6-11.The Default DSCP Pol icy T able DSCP Policy 802.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Quickly Listing Non-Defa ult Codepoint Settings T a ble 6-11 lists the switch’ s default co depoint/prio rity sett ings.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Effect of “ No-override ” In the QoS T y pe-of-Service di ff erentiated services mode, a No-override assignment for t he codepoint of an outbound packet means th at QoS is effectively disabled for such packets.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic Example of Changing the Priority Setting on a Policy When One or More Classifiers Are Currently Using the Policy Suppose that co depoint 000001 is in use by one or more classifiers.
Quality of Service (Q oS): Managing Bandwidth More Effectively Using QoS Classifiers To Conf igure QoS for Outbound Traffic Three classifiers use the codepoint that is to be changed. T wo classifiers do not use the codepoint that is to be chang ed. Figure 6-35.
Quality of Service (QoS ): Managing Bandwidth More Effectively Using QoS Classifiers To Configure QoS for Outbound Traffic c. Assig n the port-priority classifier to the new DSCP policy . d. Assign the udp-port 1260 classifier to an 802.1 p priority .
Quality of Service (Q oS): Managing Bandwidth More Effectively IP Multicast (IGMP) Interaction with QoS IP Multicast (IGMP) Interaction with QoS IGMP high-p riority- forward causes the swi tch to service the subscribed IP multicast group traffic at hi gh priority , even if QoS on the switch has relegated the traffic to a lower priorit y .
Quality of Service (QoS ): Managing Bandwidth More Effectively QoS Operating Notes and Restrictions QoS Operating Notes and Restrictions T able 6-12. Details of Pack et Criteria and Restrictions for Q.
Quality of Service (Q oS): Managing Bandwidth More Effectively QoS Operating Notes and Restrictions ■ Maximu m QoS Config uration Entr ies: The switches covered in this guide accept the maximum o utbound priorit y and/or DSCP po licy config- uration entries of 128 rul es per QoS feature.
Quality of Service (QoS ): Managing Bandwidth More Effectively QoS Operating Notes and Restrictions 6-68.
7 IP Routing Features Contents Overview of IP Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 IP Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IP Routing Features Contents Enabling IRDP Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23 Enabling IRDP on an Individual VLAN Inte rface . . . . . . . . . . . . . . . . 7-23 Displaying IRDP Information . . . . .
IP Routing Features Overview of IP Routing Overview of IP Routing The switches covered in this guide offer IP static ro uting, supporting up to 16 static routes. IP static routing is configurab le through the switch’ s console CLI. This chapter refers the switch as a “rout ing switch”.
IP Routing Features Overview of IP Routing Note Y our ProCurve switch supports IP addr esses in classical sub-net format, which includes the IP address an d the subnet m ask (example: 192.168.1.1 255.255.255.0), and Classless Interdomain R outing (CIDR) format (example: 192.
IP Routing Features Overview of IP Routing IP Route T able The IP route t able contains routing path s to IP destinati ons. Note The default gateway , which is configured as part of the IP address configura- tion described in chapt e r 7, “IP Addressin g ”, is used only wh en routing is n ot enabled on the switch.
IP Routing Features Overview of IP Routing ■ If the cache contains an entry with the de stination IP addr ess, the device uses the information in th e entry to forward the packet out the ports listed in the entry . The de stination IP address is the ad dress of the packet’ s fina l destination.
IP Routing Features Overview of IP Routing Parameter Description Default See page ICMP Router Discovery Protocol (IRDP) An IP protocol that a router can use to advertise the IP addresses of its router interfaces to directly attached hosts. Y ou can enable or disable the protocol at the Gl obal CLI Config level.
IP Routing Features Configuring IP Parameters for Routing Switches Configuring IP Parameters for Routing Switches The following sectio ns describe how to configure IP parameters. Some param- eters can be configured globally while others can be configured on indivi dual VLAN interfaces.
IP Routing Features Configuring IP Parameters for Routing Switches table or forwarding ca che. The routing switch needs to know the MAC a ddress that corresponds with the IP address of either the packet’ s locally attached destination or the next-hop router that l eads to the des tination.
IP Routing Features Configuring IP Parameters for Routing Switches routers, incl uding ProCurve rout ing sw itches, can be configured t o reply to ARP requests fr om one network on beh alf of devices on another network. See “Enabl ing Proxy ARP” be low .
IP Routing Features Configuring IP Parameters for Routing Switches ProCurve(config)# show ip Internet (IP) Service IP Routing : Disabled Default Gateway : 15.
IP Routing Features Configuring IP Parameters for Routing Switches Y ou can set or display the arp-age value using the menu interface ( Menu > Switch Configuration > IP Config ).
IP Routing Features Configuring IP Parameters for Routing Switches An ARP request from o ne subnet can reach another subnet wh en both subnets are on the same physical segment (Ethernet cable), since MAC-layer broad- casts reach all the d evices on the segment.
IP Routing Features Configuring IP Parameters for Routing Switches T o enable forwarding of IP directed broadcasts, enter the following CL I command: ProCurve(config)# ip directed-broadcast Syntax : [.
IP Routing Features Configuring IP Parameters for Routing Switches Disabling Replies to Broadcast Ping Requests By default, ProCurve devices are enabled t o respond to broadc ast ICMP echo packets, which are ping reques ts. Y ou can disable response to pi ng requests on a global basis using th e following CL I method.
IP Routing Features Configuring Static IP Routes ■ Protocol – The TCP or UDP protocol on the destination host is not running. This message is different from the Port Unreachable message, which indica tes that the prot ocol is runni ng on the host but the requ ested protocol port is un available.
IP Routing Features Configuring Static IP Routes ■ Default network route – This is a specific sta t ic route that the routing switch uses if othe r routes to the destination are not availabl e.
IP Routing Features Configuring Static IP Routes This feature allows the routing switch to adjust to ch anges in network topology . The routing switch does not continue trying to use routes on unavailable paths but instead uses routes only wh en their path s are available.
IP Routing Features Configuring Static IP Routes Configuring a “Null” Route Y ou can configure the routin g switch to drop IP packets to a specific network or host address by configuri ng a “null” static route for the address.
IP Routing Features Configuring Static IP Routes For example, Figure 7-7 illustrates a routing topology w ith two possible gateways to support a static route from switch “A” to the 10.31.224.0 network in switch “C”. VLAN 29: 10.29.224.1 VLAN 30: 10.
IP Routing Features Configuring Static IP Routes Default Loopback Network Default Loopback Interface Default Null Route Configured Static Route Destinations Directly Connected to the Switch Lists the Data for the Specified Route Figure 7-8.
IP Routing Features Configuring IRDP Configuring IRDP The ICMP Route r Discovery Protocol (IRDP) is used by ProCurve routing switches to advertise the IP addresses of its router interfaces to directly attached hosts. IRDP is enabled by de fault. Y ou can enable the feature on a global basis or on an individual VLAN interface basis.
IP Routing Features Configuring IRDP messages from other routers at th e sa me time. The interval on each IRDP- enabled routing sw itch interface is independent of the interval on ot her IRDP-enabled interfaces. The default ma ximum message interval is 600 seconds.
IP Routing Features Configuring IRDP Syntax : [n o] ip irdp Enables or disables (the default) ip irdp on the specified VLAN. [broadcast | multicast] This parameter specifies the packet type the routing switch uses to send th e Router Advertisement: broadcast - The routing switch sends Router Advertisements as IP broadcasts.
IP Routing Features Configuring IRDP [ minadvertinterval < seconds > ] This parameter specifies the mi nimum amount of time the routing switch can wait between sending Router Advertisements. Default: three-fourths (0.75) the value of the maxadvertinterva l parameter .
IP Routing Features Configuring DHCP Relay Configuring DHCP Relay Overview The Dynamic Host Configuratio n Protocol (DHCP) is used for configuring hosts with IP address an d other conf iguration parameters witho u t human intervention. The prot ocol is composed of three component s: the DHCP client, the DHCP server , and the DHCP relay agent.
IP Routing Features Configuring DHCP Relay Minimum Requ irements fo r DHCP Relay Operation In order for the DHCP Relay agent to work, the follow in g steps must be completed: 1. DHC P Relay is enabled on the routing switch 2. A DHCP server is servic ing the routing switch 3.
IP Routing Features Configuring DHCP Relay Note DHCP Option 82 DHCP operat ion modifies client IP address request p ackets to the extent needed to forward the packets to a DHC P server . Option 82 enhances this operation by enabling the ro uting switch to append an Option 82 field to such client requests.
IP Routing Features Configuring DHCP Relay However , Option 82 relay agents should be positioned at the DHCP policy boundaries in a networ k to provide maximum support and securit y for the IP addressing polici es conf igured in the server .
IP Routing Features Configuring DHCP Relay DHCP Policy Boundary: For Option 82 applications, an area of a network as defined by conn ection to a gi ven routing switch or subnet and/or a specific port belongin g to the routing sw itch or subnet. DHCP relay agent: See Relay Agent.
IP Routing Features Configuring DHCP Relay ■ routing switch access to an Opti on 82 DHCP server on a different subnet than the clients requesting DHCP Option 82 support ■ one IP Helper address configur ed on each VLAN supporting DHCP clients General DHCP-R elay Operati on with Option 8 2.
IP Routing Features Configuring DHCP Relay Option 82 Field Content The Remote ID and Circu it ID subfields comp rise the Option 82 field a rel ay agent appends to client requests.
IP Routing Features Configuring DHCP Relay ■ Circuit ID: This nonconfigurable subfi eld identifies the port number of the physical port through which th e routing switch received a given DHCP client.
IP Routing Features Configuring DHCP Relay For example, suppose you wanted port 10 on a g i ven relay agent to support no more than five DHCP cli ents simu ltaneously , you could configure the server .
IP Routing Features Configuring DHCP Relay Option 82 Configuration DHCP Client Request Packet Inbound to the Routing Switch Packet Has No Option 82 Field Packet Includes an Option 82 Field Replace App.
IP Routing Features Configuring DHCP Relay the next two relay agent ho ps (“B” and “C”). The se rver can then enforce an IP addressing policy based on the Opti on 82 field generated by the edge relay agent (“A”). In this example, the DH CP policy boundary is at relay agent 1.
IP Routing Features Configuring DHCP Relay Server response val i dation is an o pti on you can specify when configuring O p t i o n 8 2 D H C P f o r app end , replace , or drop operation.
IP Routing Features Configuring DHCP Relay Multinetted VLANs On a multinetted VLAN, eac h interface can form a n Option 82 policy boundary within that VL AN if the routin g switch is config ured to use IP fo r the remote ID suboption.
IP Routing Features Configuring DHCP Relay drop: Configures the routing switch to uncon ditionally drop any client DHCP packet received with existing Option 82 field(s). This means that such packets will not be forwarded. Use this option where access to the routing switch by untrusted clients is possible.
IP Routing Features Configuring DHCP Relay Operating Notes ■ This implem entation of DHCP relay with Option 82 co mplies with t he following RFCs: • RFC 2131 • RFC 3046 ■ Moving a clie nt to a.
IP Routing Features Configuring DHCP Relay ■ Relay agents without Option 82 can ex ist in the path between Opti on 82 relay agents and an Option 82 server . The agents without Option 82 will forward client requests and server responses without any effect on Option 82 fields in the packets.
IP Routing Features UDP Broadcast Forwarding UDP Broadcast Forwarding Overview Some applications rely on cli e nt requ ests sent as l imited IP broadcast s addressed to a UDP applicat ion port. If a se rver for the applica tion receives such a broadcast, the server c an repl y to the client.
IP Routing Features UDP Broadcast Forwarding T able 7-5. Example of a UDP Packet-Forwarding Environment Interface IP Address Subnet Mask Forwarding Address UDP Port Notes VLAN 1 15 .75.10.1 255.25 5.255.0 15 .75.11.43 11 88 Unicast address for forwarding inbound UDP packets with UDP port 1188 to a specific device on VLAN 2.
IP Routing Features UDP Broadcast Forwarding Configuring and Enabling UDP Broadcast Forwarding T o configure and enable UDP broa dcast forwarding on the switch: 1.
IP Routing Features UDP Broadcast Forwarding — Continued from the preceding page. — < ip-address >: This can be either of the following: • The unicast address of a dest ination server on another subnet. For exampl e: 15.75. 10.43. • The broadcast address of the subnet on which a destination server operates.
IP Routing Features UDP Broadcast Forwarding Displaying the Current IP Forward-Protocol Configuration Syntax show ip fo rward-protocol [ vlan < vid >] Displays the current status of UDP broadcast forwarding and lists the UDP forwarding address(es) configured on all static VLANS in the switch or on a specific VLAN .
IP Routing Features UDP Broadcast Forwarding Operating Notes for UD P Broadcast Forwarding Maximum Number of Entrie s. The number of UDP broadcast entrie s and IP helper addresses combined can be up to 16 per VLAN, with an overall maximum of 2048 on the switch.
IP Routing Features UDP Broadcast Forwarding 7-48.
8 ProCurve Stack Management Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ProCurve Stack Management Contents Using the CLI To Disable or Re-Enable Stac king . . . . . . . . . . . . . . . . 8-46 Transmission Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-46 Stacking Operatio n with Multiple VLAN s Configured .
ProCurve Stack Management Overview Overview This chapte r describes how to use your net work to stack switches wit hout the need for any specialized cabling.
ProCurve Stack Management Operation Operation Stacking Features Feature Default Menu CLI We b view stack status view status of a si ngle switch n/a page 8-27 page 8-32 page 8-46 thru page 8-29 view ca.
ProCurve Stack Management Operation ■ Simplify m anagement of small wo rkgroups or wiring closets while scaling your network to handle increased bandwidth demand. ■ Eliminate any specialized cables for stacki ng connectivity and remove the distance barriers that ty pically limit your topo logy options when using other stac king technologies.
ProCurve Stack Management Operation Components of ProCurve Stack Management T able 8-1. Stacking Defi nitions Stack Consists of a Commander swit ch and any Member switches belong ing to that Commander’ s stack. Commander A switch that has been manually configured as t he controlling device for a stack.
ProCurve Stack Management Operation Member Switch 1 IP Address: None Assigned Manager Password: le ader Candidate Switch IP Address: None Assi gned Manager Password: francois Non-Member Switch IP Address: 14.
ProCurve Stack Management Operation ■ If multip le VLANs are configure d , stacking uses only the primary VLAN on any switch. In the fact ory-defa ult configur ation, the DEF AUL T_VLAN is the primary VLAN. (See “Stacking Operation with Multiple VLANs Configured” on pa ge 8-45 and “The Primary VLAN” on page 2-7.
ProCurve Stack Management Operation IP Addressing and Stack Name Number Allowed Per Stack Passwords SNMP Communities Member IP Addr: Optional. Configuring an IP address allows access via T elnet or web browser interface without going through the Commander switch.
ProCurve Stack Management Configuring Stack Managemen t Configuring Stack Management Overview of Configuring and Bringing Up a Stack This process assumes that: ■ All switch es you want to i nclude in a stack are connected to the same subnet (broadcast domain).
ProCurve Stack Management Configuring Stack Management T able 8-3. Stacking Confi guration Guide Join Method 1 Commander (IP Addressing Required) Candidate (IP Addressing Optional) Auto Grab Auto Join Passwords Automatically add Candidate to Stack (Causes the first 15 eligible, discovered switches in the subnet to automatically join a stack.
ProCurve Stack Management Configuring Stack Managemen t General Steps for Creating a Stack This section describes th e general stack creation process. For the detail ed configuration pro cesses, see pages 8-13 through 8-37 for the menu interfac e and pages 8-30 throug h 8-42 for the CLI.
ProCurve Stack Management Configuring Stack Management join the stack, assign IP addresse s to these devices. Otherwise, IP addressing is optional for Candidat es and Members. (Note that once a Candidate becomes a member , you can acce ss it through the Commander to assign IP addressin g or make other configur ation changes.
ProCurve Stack Management Configuring Stack Managemen t Figure 8-5. The Default Stac king Menu 3. Display the Stack Conf iguration menu by pressing [3] to select Stack Configuration . Figure 8-6. The Default Stac k Configuration Screen 4. Move the cursor to the Stack State field by pressing [E] (for Edi t ).
ProCurve Stack Management Configuring Stack Management Figure 8-7. The Default Comm ander Configuration in the Stack Configurati on Screen 6. Enter a unique stack name (up to 15 characters; no spaces) and press the downarrow key .
ProCurve Stack Management Configuring Stack Managemen t ■ Convert the Candidate to a Commander ■ Disable stacking on the Candidate so that it operates as a standalone switch In its default stackin.
ProCurve Stack Management Configuring Stack Management Figure 8-8. The Default Stac k Configuration Screen 3. Move the cursor to the Stack State field by pressing [E] (for Edi t ). 4. Do one of the following: • T o disable stacking on the Candidate, use the Space bar to select the Disabled option, then go to step 5.
ProCurve Stack Management Configuring Stack Managemen t 5. press [Enter] to return the cursor to the Actions line. 6. Press [S] (for Save ) to save your configuration changes and return to the Stacking menu.
ProCurve Stack Management Configuring Stack Management For status descri ptions, see th e table on pag e 8-47. Figure 8-9. Example of the Stack Mana gement Screen 2. Press [A] (for Add ) to add a Candidate. Y ou will then see this screen listing the available Candidates: The Commander auto matically sele cts an available switch number (SN).
ProCurve Stack Management Configuring Stack Managemen t • If the desired Candidat e has a Manager password, press the downarrow key to move the cursor to t he Candidate Password field, then type the password . • If the desired Candi date does not have a password, go to step 6.
ProCurve Stack Management Configuring Stack Management 2. T o learn or verify the MAC address of the Member you want to move, display a listing of all Commanders , Members, and Ca ndidates in the subnet by selecting: 2. Stacking Status (All) Y ou will then see the St acking Status (All) screen: For status descriptions, see the tabl e on page 8-47.
ProCurve Stack Management Configuring Stack Managemen t 7. Use the downarrow key to move the cursor to the MA C Address field, then type the MAC addres s of the desired Member you wa nt to move from another stack.
ProCurve Stack Management Configuring Stack Management T o remove a Member from a stack, use the Stack Manageme nt screen. 1. From the Mai n Menu, select: 9. Stacking... 4. Stack Managemen t Y ou will then see th e Stack Management screen: For status descriptions, see the table on page 8-47.
ProCurve Stack Management Configuring Stack Managemen t 4. T o conti nue deleting the selected Member , press the Space bar once to select Ye s for the prompt , then press [Enter] to complete the deletion. Th e Stack Management screen updates to sh ow the new stack Member list.
ProCurve Stack Management Configuring Stack Management Main Menu for stack Member name d “Coral Se a” (SN = 1 from figure 8-16) Figure 8-17. The eXecut e Command Display s the Console Main Men u for the Selected Stack Member 2.
ProCurve Stack Management Configuring Stack Managemen t 4. T o display Sta ck Configurat ion menu for the switch you are moving, select 3. Stack Configura tion 5. Press [E] (for E dit ) to select the Sta ck State parameter . 6. Use the Spa ce bar to select Member , then press [v] to move to th e Com- mander MAC Address field.
ProCurve Stack Management Configuring Stack Management Using Any Stacked Switch T o V iew the Status for All Switches with Stacking Ena bled. This procedure displa ys the general status of all sw itches in the IP subn et (broadcast do main) that have stacking enabled.
ProCurve Stack Management Configuring Stack Managemen t Figure 8-19. Example of the Comm ander’ s Stacking Status Screen V iewing Member Status. This procedure di splays the Member’ s stacking information plus the Commander’ s status, IP address, and MAC address.
ProCurve Stack Management Configuring Stack Management Figure 8-20. Example of a Me mber’ s Stacking Stat us Screen V iewing Candidate Status. This procedure displ ays the Candidate’ s stacking conf iguration. T o display the status for a Candidate: 1.
ProCurve Stack Management Configuring Stack Managemen t Using the CLI T o View Stack Status and Configure Stacking The CLI ena bles you to do all of the stacking t asks availabl e through the m enu interface.
ProCurve Stack Management Configuring Stack Management CLI Command Operation [no] stack member <switch-num> mac-address <mac-addr> [password <password-str> ] Commander: Adds a Candidate to stack membership. “No” form removes a Member from stack membership.
ProCurve Stack Management Configuring Stack Managemen t Using the CLI T o View Stack Status Y ou can list the st ack status for an individual switch and f or other switches that have been discover ed in the sa me subn et. Syntax : show stack [candidates | view | all] V iewing the Status of an Individual Swi tch.
ProCurve Stack Management Configuring Stack Management V iewing the Status of all Stack-Enabled Swit ches Discovered in the IP Subnet. The next example lists all the stac k-configured switches discovered in the IP subnet.
ProCurve Stack Management Configuring Stack Managemen t Using the CLI T o Configure a Commander Switch Y ou can configure any stacking- e nabled sw itc h to be a Commander as long as the intended stack name does not already exis t on the broadcast domain.
ProCurve Stack Management Configuring Stack Management The stack command er command configures the Command er and names the stack . The Commander appe ars in the stack as Swi tch Number (SN) 0.
ProCurve Stack Management Configuring Stack Managemen t Figure 8-27. Example of Using a Mem ber’ s CLI T o Convert the Member to t he Commander of a New Stac k Removes the Member from the “Big_W aters” stack. Converts the former Member to the Com- mander of the new “Lakes” stack.
ProCurve Stack Management Configuring Stack Management Using the Commander’ s CLI T o Manually Add a Cand idate to the Stack. T o manually add a candidate, you will use: ■ A switch number ( SN ) to assign to the new member . Member SNs range from 1 to 15.
ProCurve Stack Management Configuring Stack Managemen t For example, if the ProCurve 8000M in the above listing did not have a Manager password and you want ed to make it a stack Member wi th an SN of.
ProCurve Stack Management Configuring Stack Management Using a Candidate CLI T o Manually “Push” the Candidate Into a Stack . Use this method if any of the following appl y: ■ The Candidate’ s Auto Join is set to Ye s (and you do not want to enable Auto Grab on the Commander) or the Candidate’ s Auto Join is set to No .
ProCurve Stack Management Configuring Stack Managemen t Syntax : stack member < switch-number > mac-address < mac-addr > [ password < password-str >] In the destination Commander , use show stac k all to find the MAC address of the Member you wan t to pull into the de stination stac k.
ProCurve Stack Management Configuring Stack Management Syntax : no stack name < stack name> stack join < mac-address > If you don’ t know the MAC address of th e destination Command er , you can use show stack all to identi fy it.
ProCurve Stack Management Configuring Stack Managemen t Use show sta ck view to list the stack M embers. For example, suppose that you wanted to use the Command er to remove the “North Sea” Me mber from the following stac k: Remove this Member from the stack.
ProCurve Stack Management Configuring Stack Management Y ou would then execute this com m and in t he “North Sea” switch’ s CLI to remove the switch from the stack: North Sea(config)# no stack j.
ProCurve Stack Management Configuring Stack Managemen t SNMP Community Operation in a Stack Community Membership In the default stacking co nfiguratio n, when a Ca nd idate joins a stack, it automatic.
ProCurve Stack Management Configuring Stack Management Note that in the above example (fig ure 8- 37) you cannot use the public community thro ugh the Comma nder to access any of the Member switches. For example, you can use the public co mmunity to ac cess the MIB in switches 1 and 3 by using their unique IP addre sses.
ProCurve Stack Management Configuring Stack Managemen t When using stacki ng in a multiple-VLA N environme nt, the following crit eria applies: ■ Stacking uses only the primary VLAN on each switch in a stack. ■ The primary VLAN can be tagged or untagged as needed in the stacking path from switch to swi tch.
ProCurve Stack Management Configuring Stack Management Status Messages Stacking screens and li stings display these status messages: Message Condition Action or Remedy Candidate Auto-join Indicates a switch configured with Stack State set to None required Candidate, Auto Join set to Ye s (the default), and no Manager password.
ProCurve Stack Management Configuring Stack Managemen t 8-48.
Index Numerics 802.1p priority (QoS) definition … 6-6 802.1Q VLAN standard … 5-7 802.1w as a region … 5-54 A active path … 5-5 address IP … 7-8 advertisement … 3-3 applicable products … .
DHCP-Relay operation with Option 82 … 7-31 directed broadcasts … 7-13 disclaimer … 1-ii displaying information IRDP … 7-25 domain … 2-15, 2-21 downstream device (QoS) definition … 6-6 effect of priority settings … 6-9 DSCP Policy Table … 6-59 policy, defined … 6-6 See also priority.
configuration … 4-11 configure per VLAN … 4-5 data-driven … 4-15 delayed group flush … 4-17 Exclude Source … 4-13 Fast-Leave … 4-14 forced fast-leave … 4-17 high-priority forwarding … .
multiple … 2-10 multiple forwarding database … 2-10 N notes on using VLANs … 2-10 notices … 1-ii null static route … 7-19 O optimizing RSTP configuration … 5-13 Option 82 (DHCP) … 7-28 o.
quick start … 1-5 R reboot … 3-10 redundant path … 5-9, 5-50 spanning tree … 5-9 region … 5-49 See spanning-tree, 802.1s. report See IGMP revision number … 5-53 router … 4-11 routing con.
activation … 5-60 active path … 5-50 active paths … 5-54 bandwidth loss … 5-51 blocked traffic … 5-51 boundary port, region … 5-53, 5-54 boundary port, VLAN membership … 5-51 BPDU … 5-.
rapid state transitions … 5-55, 5-57 redundant links … 5-51 region … 5-5, 5-47, 5-48 region name … 5-53, 5-60 region root switch … 5-48 region, configuration name … 5-81 region, Configurat.
configure … 7-44 global enable … 7-44 invalid entry … 7-43 IP helper address, effect … 7-42 maximum entries … 7-42 port-number ranges … 7 -47 show command … 7-46 subnet address … 7-42 .
.
© Copyright 200 7 Hewlett-Packar d Development Company , L.P . December 200 7 Manual Part Number 599 1-864 1.
An important point after buying a device HP (Hewlett-Packard) 2610 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought HP (Hewlett-Packard) 2610 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data HP (Hewlett-Packard) 2610 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, HP (Hewlett-Packard) 2610 you will learn all the available features of the product, as well as information on its operation. The information that you get HP (Hewlett-Packard) 2610 will certainly help you make a decision on the purchase.
If you already are a holder of HP (Hewlett-Packard) 2610, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime HP (Hewlett-Packard) 2610.
However, one of the most important roles played by the user manual is to help in solving problems with HP (Hewlett-Packard) 2610. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device HP (Hewlett-Packard) 2610 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center