Instruction/ maintenance manual of the product MSP430x11x1 Texas Instruments
Go to page of 45
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Low Supply V oltage Range 1.8 V – 3.6 V Ultralow-Power Consumption Low Operation Current, 1.3 µ A at 4 kHz, 2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 A V AILABLE OPTIONS P ACKAGED DEVICES T A PLASTIC 20-PIN SO.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 3 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 T erminal Functions TERMINAL TERMINAL I/O DESCRIPTION NAME NO. I/O DESCRIPTION P1.0/T ACLK 13 I/O General-purpose digital I/O pin/T imer_A, clock signal T ACLK input P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 short-form description (continued) CPU All sixteen registers are located inside the CPU, providing reduced instruction execution time.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 instruction set (continued) Computed branches (BR) and subroutine calls (CALL) instructions use the same addressing modes as the other instructions.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 status register R2 Reserved For Future Enhancements 15 9 8 .
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the memory with an address range of 0FFFFh-0FFE0h.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 special function registers Most interrupt and module enable bits are collected into the lowest address space.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 memory organization Int. V ector 2 KB ROM 128B RAM 16b Per . 8b Per . SFR FFFFh FFE0h FFDFh F800h 027Fh 0200h 01FFh 0100h 00FFh 0010h 000Fh 0000h MSP430C1 1 11 Int.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 boot ROM containing bootstrap loader (continued) features of the bootstrap loader are: UART communication protocol, fixed to 9600 baud Port pin P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 boot ROM containing bootstrap loader (continued) Program e.
Segment0 w/ Interrupt V ectors 0FFFFh 0FE00h Information Memory Flash Main Memory Segment1 Segment2 Segment3 Segment4 Segment5 Segment6 Segment7 SegmentA SegmentB 0FDFFh 0FC00h 0FBFFh 0F A00h 0F9FFh 0F800h 0F7FFh 0F600h 0F5FFh 0F400h 0F3FFh 0F200h 0F1FFh 0F000h 010FFh 01080h 0107Fh 01000h NOTE: All segments not implemented on all devices.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 flash memory control register FCTL1 (continued) Read access is possible at any time without restrictions. The control bits of control register FCTL1 are: SEG WRT FCTL1 0128h MEras Erase res.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 flash memory , timing generator , control register FCTL2 (continued) The flash timing generator is reset with PUC.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 flash memory control register FCTL3 (continued) BUSY 012Ch, bit0, The BUSY bit shows if an access to the flash memory is allowed (BUSY=0), or if an access violation occurs.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 flash memory control register FCTL3 (continued) LOCK 012Ch, bit4, The lock bit may be set during any write, segment-erase, or mass -erase request.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Flash Module Flash Module Flash Module KEYV System Reset Generator VCC POR PUC WDTQn EQU PUC POR PUC POR NMIRS Clear S WDTIFG IRQ WDTIE Clear IE1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled easily with memory manipulation instructions.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 19 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 oscillator and system clock (continued) DIV A XIN LFXT1 OS.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 digital I/O (continued) The seven registers are: • Input.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 21 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Timer_A (3 capture/compare registers) (continued) P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Comparator_A The primary function of the comparator module is to support precision A/D slope conversion applications, battery voltage supervision, and observation of external analog signals.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Comparator_A (continued) The control bits are: CAOUT , 05Ah, bit0, Comparator output CAF , 05Ah, bit1, The comparator output is transparent or fed through a small filter CA0, 05Ah, bit2, 0: Pin P2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Comparator_A (continued) CA1 CA0 CAEX 7 rw-(0) CA RSEL rw-(0) CA REF1 rw-(0) CA REF0 rw-(0) CAON rw-(0) CAIES rw-(0) CAIE rw-(0) CAIFG 0 rw-(0) CACTL1 059h CACTL 2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 25 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 peripheral file map PERIPHERALS WITH WORD ACCESS Timer_A R.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 absolute maximum ratings † V oltage applied at V CC to V SS (MSP430C1 1x1) –0.3 V to 4.6 V . . . . . . . .
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 27 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 recommended operating conditions (continued) 5 MHz at 2.2 V MSP430x1 1x1 Devices NOTE: Minimum processor frequency is defined by system clock.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supp.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 29 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Schmitt-trigger inputs Port P1 to Port P2; P1.0 to P1.7, P2.0 to P2.5 P ARAMETER TEST CONDITIONS MIN TYP MAX UNIT V IT Positive going in p ut threshold voltage V CC = 2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supp.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 31 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supp.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 33 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) _ + CAON 0 1 V+ 0 1 CAF Low Pass Filter τ ≈ 2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) VCC POR V t V (POR) V (min) POR No POR Figure 1 1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 35 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supp.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics over recommended ranges of supp.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 37 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICA TION INFORMA TION input/output schematic Port P1, P1.0 to P1.3, input/output with Schmitt-trigger EN D (See Note 27) (See Note 28) (See Note 28) (See Note 27) GND V CC P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICA TION INFORMA TION Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features EN D See Note 27 See Note 28 See Note 28 See Note 27 GND V CC P1.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 39 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICA TION INFORMA TION Port P2, P2.0 to P2.2, input/output with Schmitt-trigger EN D See Note 27 See Note 28 See Note 28 See Note 27 GND V CC P2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICA TION INFORMA TION Port P2, P2.3 to P2.4, input/output with Schmitt-trigger EN D See Note 27 See Note 28 See Note 28 See Note 27 GND V CC P2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 41 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Port P2, P2.5, input/output with Schmitt-trigger and R OSC function for the Basic Clock module EN D See Note 27 See Note 28 See Note 28 See Note 27 GND V CC P2.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICA TION INFORMA TION Port P2, unbonded bits P2.6 and P2.7 EN D 0 1 0 1 Interrupt Edge Select EN Set Q P2IE.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 43 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DA T A DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE P ACKAGE 16 PIN SHOWN 4040000 / D 02/98 Seating Plane 0.
MSP430x1 1x1 MIXED SIGNAL MICROCONTROLLER SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DA T A PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE P .
IMPORT ANT NOTICE T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify , before placing orders, that information being relied on is current and complete.
An important point after buying a device Texas Instruments MSP430x11x1 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Texas Instruments MSP430x11x1 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Texas Instruments MSP430x11x1 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Texas Instruments MSP430x11x1 you will learn all the available features of the product, as well as information on its operation. The information that you get Texas Instruments MSP430x11x1 will certainly help you make a decision on the purchase.
If you already are a holder of Texas Instruments MSP430x11x1, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Texas Instruments MSP430x11x1.
However, one of the most important roles played by the user manual is to help in solving problems with Texas Instruments MSP430x11x1. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Texas Instruments MSP430x11x1 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center