Instruction/ maintenance manual of the product LUFP9 Schneider Electric
Go to page of 118
LUFP9 Telemecanique User’s manual Gateway DeviceNet / Modbus RTU.
.
3 LUFP9 Gateway DeviceNet / Modbus RTU Page 4.
4 In spite of all the care taken over the writing of this docume nt, Schneider Electric SA does not give any guarantees in relation t o the informati on contai ned in it, and may not be held liabl e for any errors, nor for any damage w hich might res ult fr om its use or its applicati on.
5 Table of contents 1. Introduction ............................................................6 1.1. Introduction to the user guide ................................................. 6 1.2. Introduction to the LUFP9 Gateway ..........................
6 1. Introduction 1.1. Introduction to the user guide Ch a p te r 1 Introduction (pag e 6) describes the gateway, the u ser guide that com es with it and the terms u sed in it.
7 1. Introduction 1.2. Introduction to the LUFP9 Gateway The LUFP9 gateway allo ws a master located on a Dev iceNe t network to enter into a dialogue with the slaves on a Modbus RTU network. This is a generi c protocol converte r operating in a way which is transparent to the user.
8 1. Introduction 1.4. Notational Conventions 16#•••• .............. Value expressed in hexadecim al, which is equivalent to t he H••••, ••••h and 0x•••• notations, sometimes used in other documents. N.B. The AbcConf software uses the 0x•••• notation.
9 1. Introduction 1.6. Introduction to the Communication “System” Architecture Upstream network (DeviceNet) AT S4 8 VW33-A48 A TS46 VW3-G 46301 DeviceNet Master Dow nstream networ k no.1 (Modbus) Downstream netw ork no.3 (Modb us) Dow nstream networ k no.
10 1. Introduction Each LUFP9 DeviceNet / Modbus RTU gat eway allows a PLC on the DeviceNet network to command, control and configure up to 8 Modbus slaves. If there are mo re than 8 Modbus slaves, you will need to use an appropriate number of LUFP9 gateways.
11 1. Introduction Ö Each LUFP9 gateway is shipped pre-configured so a s to make it easier to operate an d the factory settings can be used as a basis for a conf iguration which will best meet the user’s expectations. The typical operations applicable to this default configuration are descri bed in chapter 6 Confi guring the Gateway, page 40.
12 1. Introduction — Managing Gateway ↔ DeviceNet master exchanges — LUFP9 gateway 0x0000 0x01FF Input Modbus data : Managem ent of exchanges with the Device Net master Free me mo ry location s .
13 2. Hardware Implementation of the LUFP9 Gateway 2.1. On Receipt After opening the packaging, chec k t hat the following element is there: • One LUFP9 DeviceNet / Modbus RTU gateway. 2.2. Introduction to the LUFP9 Gateway The cables and other acce ssories for conn ecting to DeviceNet and Modbu s networks need to be ordered separately.
14 2. Hardware Implementation of the LUFP9 Gateway 2.3. Mounting the Gateway on a DIN Rail Mounting the gateway 1 2 Dismounting the gate way 1 2 Start by fitting the rear base of the gateway to the upper part of the rail, pushing do wnwards (1) to compress the gateway’s spring.
15 2. Hardware Implementation of the LUFP9 Gateway 2.5. Connecting the Gateway to the Modbus Network Three typical examples of Modbus connection for the gate way and its slaves are shown below. There are many other possible Modbus connections, but they are not covered in this documen t.
16 2. Hardware Implementation of the LUFP9 Gateway • “Bus” topology with VW3 A8 306 TF3 dro p boxes: This topology uses VW3 A8 306 TF3 dr op boxes to connect each of the Modbus slaves to the main section o f the Modbus network. Each bo x should be placed in the immediate vicinity of the Mo dbus slave it is associat ed with.
17 2. Hardware Implementation of the LUFP9 Gateway • “Bus” topology with tap boxes: This topology is similar to the p revious one, except that it uses TSXSCA62 subscriber connectors and/or TSXCA50 subscriber conne ctors. We recommend using a VW3 A68 306 connection cab le and the TSXCSA•00 Modbus cabl es.
18 2. Hardware Implementation of the LUFP9 Gateway 2.5.3. Wiring recommendations for the Modbus net w ork • Use a shielded cable with 2 pairs of twisted conductors, • connect the reference potenti.
19 2. Hardware Implementation of the LUFP9 Gateway 2) Cables: VW3 A8 306 R•• Modbus ca ble ................................... (“star” topology / “bus” topology with tap boxes) Shielded cable with a male RJ45 connector at ea ch end. VW3 A68 306 Mo dbus cable.
20 2. Hardware Implementation of the LUFP9 Gateway 2.7. Configuring DeviceN et Communication Features This configuration should be carried out when the gateway is powered off. The block of selector swit ches allowing you to configure the DeviceNet communication functions is hidden behind the gateway cover g (see illustration in chapter 2.
21 2. Hardware Implementation of the LUFP9 Gateway 2.7.2. Encoding the Gateway Address The LUFP9 gateway is identified on the DeviceNet bus by its addre ss (or “Mac ID”), which is betwe en 0 and 63. ON 2 3 4 5 6 8 S p eed A d dress ( M ac ID ) 1 7 The gateway’s DeviceNet address depends on the position of selector swit ches 3 to 8.
22 3. Signalling The gateway’s 6 LEDs and the de scriptive label on th e removable cover which hides its block of selecto r switches allow you to diagnose the status of the gateway: c e g d f h telm.
23 4. Software Implementation of the Gateway 4.1. Introduction This chapter gives an introdu ction to a quick impl ementation of the LUFP9 gateway, using its default configuration. All LUFP9 gat eways ship pre- configured . This pre-configuration means that the user does not have to configure the LUFP9 gateway using AbcConf.
24 4. Software Implementation of the Gateway 4.1.2. Configuring the Motor Starters Each motor starter should be configured as follows: Protocol: Modbus RTU slave Start bits 1 Modbus address 1 to 8 Par.
25 4. Software Implementation of the Gateway 4.2. Configuring the Gateway in RsNetWorx The DeviceNet master PLC must be configured so t hat it has access to all of the data described in chapters 8.2.1 Input Data Memory Area, page 84 et 8.2.2 Output Data Memory Area, page 85.
26 4. Software Implementation of the Gateway 4.2.3. Selecting and Adding the Gate way to the DeviceNet Net work Select “LUFP9” from the list on the left, t hen add it to the DeviceNet network topology.
27 4. Software Implementation of the Gateway If you are in an y doubt ove r what is displ ayed, click o n the “Uploa d From Device ” button, then on “S tart Monit or”. Th e RsNetWorx application then start s to read from the gateway the values of the parameters currently di splayed.
28 4. Software Implementation of the Gateway 4.2.5. Configuring the DeviceNet Sca nner Double-click on the icon whi ch corresponds to the DeviceNet scann er. A window then appears all owing you to co nfigure the exchang es carried out by the scann er.
29 4. Software Implementation of the Gateway 4.2.6. Configuring Inputs from the Gate way On the “Input” tab, select the “LUFP9” gateway, then click o n the “AutoMap” button.
30 4. Software Implementation of the Gateway 4.2.7. Configuring Outputs Intended for the Gate w ay On the “Out put” tab, select the “LU FP9” ga teway, then click on the “AutoMap” button.
31 4. Software Implementation of the Gateway 4.2.8. Description of Services Assigned to Gate w ay Inputs/Outputs Managing the downstream Modbus net work: Please see chapter 5.2 Diagnostic only, page 37, for a detail ed description of this service. The example describ ed in chapter 9.
32 4. Software Implementation of the Gateway 4.2.9. Transferring the DeviceNet Scann er Configuration Once you have finished the operatio ns describe d above, make sure that the changes mad e have been transmitted to the DeviceNet scanner.
33 5. Gateway Initialization and Diagnostics Each of the three sub-chapters 5.1, 5.2 and 5.3 de scribes the princi ple used to initialize and carry out diagnostics on the gateway usin g each of the three opt ions offered by the gatew ay.
34 5. Gateway Initialization and Diagnostics Bits Description 14 FB_HS_SEND: New command from the DeviceNet master Before changing the value of FB_D U, the De viceNet master must compare the values of FB_HS_SEND and ABC_HS_CONFIRM (bit 14 of the gate w ay’s status word).
35 5. Gateway Initialization and Diagnostics 5.1.2. Gateway Status Word The input word located at addresses 16#0 000 (MSB ) and 1 6#0001 (LSB) in the gateway’ s input memory constitutes the gateway’s status word.
36 5. Gateway Initialization and Diagnostics The correct use of this status word by the DeviceNe t master, to read a diagnostic generated by the gateway, goes through the following st eps: • Checking of (ABC_HS_SEND ≠ FB_HS _CONFIRM). • Reading of the value of ABC_DU to determine wh ethe r all of the Modbus input data are up-to-date.
37 5. Gateway Initialization and Diagnostics 5.2. Diagnostic only The gateway uses a 16-bit register, lo cated at t he addresses 16#0000 and 1 6#0001 in its memory (inputs), to send diagnostics to the DeviceNet master.
38 5. Gateway Initialization and Diagnostics Due to the inversion of the LSB and the MSB for this register bet ween the gateway and the DeviceNet master, the structure of the correspondi ng input word (“I:1.
39 5. Gateway Initialization and Diagnostics Due to the inversion of the LSB and the MSB for this register bet ween the gateway and the DeviceNet master, the structure of the correspo nding output word (“O:1.1” in the ca se of the default configuration) is as follows: Bits Description 8-15 Reserved.
40 6. Configuring the Gateway Each part of this chapter describes a separate ste p allowing the user to personaliz e the gateway configu ration, according to his own particula r needs.
41 6. Configuring the Gateway 6.1.1. Pin Outs — LUFP9 (Configuration) — Female RJ45 Male RJ45 11 22 33 8 RS-485 D(B) 4 4 D(B) RS-485 D(A) 5 5 D(A) 66 +10 V 7 7 +10 V GND 8 8 0 V Straight POWERSUIT.
42 6. Configuring the Gateway 6.2. Installing AbcConf The minimum system requirement s for AbcConf are as follows: • Processor ........................................Pentium 133 MHz • Free hard disk space ......................10 Mb • RAM .....
43 6. Configuring the Gateway 6.4. Transferring a Conf iguration to the Gateway When using AbcConf, you can transfe r the configurat ion you are editing to the gateway at any time. Choose “Down load conf iguration to ABC-LUFP ” from the “F ile” menu or clic k on the button, in the AbcConf toolbar.
44 6. Configuring the Gateway The upper part of this window allo ws you to choose a Modbus command, to edit its contents, then to send it to the Modbus net work (“Comm and” menu). The response wil l then be displayed in this same part. Please see chapter 2.
45 6. Configuring the Gateway 6.6. Deleting a Modbus Slave This step allows you, for instance, to free up a location on the downstream Modbus network, known as the “Sub- Network” in AbcConf, in order to replace one Mod bus slave with another.
46 6. Configuring the Gateway However, these operations are not necessary whe n del eting a single slave. Conver sely, they become almost essential when most of the Modbus slaves are delet ed, because these deletions divid e up the gateway’s memory.
47 6. Configuring the Gateway Importing/exporting a Modbus slave configura tion: AbcConf offers the possibility of independently savi ng and loading the configuration of a node on the downstream “Sub-Network”. For instan ce, this will allow you to buil d a library of Modbus slave template s, so that you can use them in any configuration.
48 6. Configuring the Gateway 6.8. Changing the Periodic Data Exchanged With a Modbus Slave This operation consists of replacing, addin g or delet ing periodic data ex changed with one of the Modbus slaves.
49 6. Configuring the Gateway 6.8.2. Replacing an Output Periodic Data Element E.g. “TeSys U n°6” motor starter. We are trying to replace the cont rol of the “Command Register” (address 704 = 16#02C0) with the control of the “2n d Command Registe r” (address 705 = 16#02C1).
50 6. Configuring the Gateway 6.8.3. Increasing the Amount of Periodic Input Data E.g. “TeSys U no. 2” motor starter. We are trying to comp lete the monitoring of this motor starter starting from .
51 6. Configuring the Gateway 3) Changing the location of the Modb us data received in the gateway’s memory: As the number of bytes read (see previous step) has incre ased from 2 to 16, t he Modbus .
52 6. Configuring the Gateway To check that these changes have been e ntered into the configuration, choose “Monitor” from the “S ub- Network” menu again: In point 6), you shall make sure the values of the displaye d parameters are the same as the exchange sizes displaye d in the “Sub-network Monitor.
53 6. Configuring the Gateway In this guide, we will be using the “AutoMap” comm and to establish a “raw” corre spondence with all of the data from the LUFP9 gateway. We then get the co rrespon dence shown below, deriv ed from the one used with the gateway’s default configurat ion.
54 6. Configuring the Gateway 1) Changing the numbe r of registers controlled: This st ep consists of chan ging the value of the “No. of Registers” in the “Query” and in the “Re sponse” for the “Preset Multiple Registers” command (Modbus command for writing values of a number of registers).
55 6. Configuring the Gateway 3) Changing the location of the Modb us data transmitt ed into the gateway’s memory: As the number of bytes written (see previous step) ha s increased from 2 to 4, the .
56 6. Configuring the Gateway To check that these changes have been e ntered into the configuration, choose “Monitor” from the “S ub- Network” menu again: In point 6), you shall make sure the values of the displaye d parameters are the same as the exchange sizes displaye d in the “Sub-network Monitor.
57 6. Configuring the Gateway 8) Configuring the Device Net master PLC outputs: In RsNetWorx, esta blish a new correspond ence between the data transmitted to the gateway and t he PLC outputs, acco rding to the r equirements of your application (see chapter 4.
58 6. Configuring the Gateway 6.9. Deleting Aperiodic Parameter Data If your PLC application does not need the aperiodic service for reading/writin g parameter data on Modbus slaves, you can delete the associated comm ands.
59 6. Configuring the Gateway 4) Checking the new me mory occupation: If you wish to check how much of the gate way’s memory is now occupied, select “Sub-Network” a nd choose “Monitor” from the “S ub-Network” menu. The follo wing window appears, allowing you to see how much of the gateway ’s memory is occupied by Modbus d ata.
60 6. Configuring the Gateway Description Service PLC input Bit 0 ..................... Bit 7 Bit 8 .................... Bit 15 LUFP9 gateway status word Managing the downstream Mod bus network I:1.1 (MSB Æ 16#xx••) (LSB Æ 16#••xx) I:1.2 Value of the motor starter c status register I:1.
61 6. Configuring the Gateway 6.10.2. Changing the Address of a Modbu s Slave To carry out this operation, all you have to do is sele ct the node which corresponds to the Modbus slave involved (“Dev.
62 6. Configuring the Gateway 6.11. Adding and Setting Up a Modbus Command 6.11.1. With TeSys U Motor Starter s With TeSys U motor starters, the main use of ad ding a Modbus command consists of allowing you to control or monitor additional registers, without having to chang e the el ements in the default config uration.
63 6. Configuring the Gateway Name of the Modbus command Modbus quer y ! Frame " Slave no. Function no. No. of the 1st word ( MSB / LSB ) Number of words ( MSB / LSB ) CRC16 ( LSB / MSB ) Modbus res p onse ! Frame " Slave no. Function no. Numbe r of b y tes read …Values of the words ( MSB/LSB ) … CRC16 ( LSB / MSB ) N.
64 6. Configuring the Gateway We rename the “New Node”, which has just been created, in “ATS48”, and we assign it the Modbus address 10, as shown here: We then proceed to add the “Preset Single Register” command by choosing “Add Command” from the “A TS48” menu.
65 6. Configuring the Gateway 6.11.2.1. Managing Degraded Modes Due to the num ber of hardware elements and software tools used, the followi ng table shows a summary of the various degraded modes in a DeviceNet application.
66 6. Configuring the Gateway 6.11.2.2. Configuring the Query Select the “Query” element from the Modbus command. The various elements of the configurat ion of the query for this command are shown opposite. The values displayed corre spond to the default values for any new command.
67 6. Configuring the Gateway Configuration element Description Retries This element indicates the number of re-tra nsmi ssions carried out by the gateway if there is no response from the Modbus sl ave to a query, or if the response is incorrect.
68 6. Configuring the Gateway Configuration element Description Update mode This ele ment is used to specif y the transm ission mode fo r the query on the Modbus network. It takes one of the following four value s: - Cyclically .......................
69 6. Configuring the Gateway 6.11.2.3. Configuring the Response Next select the “Response” elem ent from the Modbus command. The various element s of the configuration of the response for this command are shown op posite. The values displayed corresp ond to the default values for any new command.
70 6. Configuring the Gateway 6.11.2.4. Configuring the Content of the Que ry Frame The window shown below is obtained using “Edit Frame” from the “Q uery” menu . Unlike the tree s tructure in the main AbcConf window, this display has the advantage of showin g all of the frame’s fie lds at the same time as well as their values.
71 6. Configuring the Gateway Field in the frame Size in the frame Description Preset Data 2 bytes or more for a block of data Data Location: Address, in the gateway’s output data memo ry (16#0202 to 16#03FF), of the item of data to be transmitted in the “Preset Data” field for the query’s frame.
72 6. Configuring the Gateway Field in the frame Size in the frame Description Checksum 2 bytes Error check type: Ty pe of error check for the frame. - CRC ..................... De fau lt me t ho d. T hi s i s t he met hod ado pte d fo r th e Mo dbu s RTU protocol.
73 6. Configuring the Gateway Field in the frame Size in the frame Description Sl ave Ad dre ss 1 byte Identical to that of the query’s “Slave Addre ss” field.
74 6. Configuring the Gateway Please see chapter 2.12 Com mand editor in the AbcConf user manu al, entitled AnyBus Communicator – User Manual , for further information about creating standard Modbus commands. This manu al can be found on the CD LU9CD1 : “ ABC_User_Manual.
75 6. Configuring the Gateway The LUFP9 gateway’s default configuration includ es two “Transaction ” commands. These a re aperiodic commands used for reading and writing the value of a M odbus slave paramet er (necessarily a TeSys U motor starter with the default configuration).
76 6. Configuring the Gateway The only command accessible from the “Fieldbu s” menu is “About Fieldbus… ”. In “on-line” mode (see chapte r 6.
77 6. Configuring the Gateway Apart from the “Control/Status Byte” and “Module Rese t” options, the configu ration of the LUFP9 gateway’s “ABC” element should not be changed. Out of the four opt ions shown below, the last two shoul d therefore retain the values shown: “Serial” and “Mast er Mode”.
78 6. Configuring the Gateway - “Sub-Network Status…”: In “on-line” mode (see chapter 6.12.2 “ABC” Element, page 76), this command displays a window summa rizing the values of the gateway’s error counters. These counters a re also used by the gateway to update the value of its status word (see chapter 5.
79 6. Configuring the Gateway 6.13. Adding a Broadcaster Node A broadcaster n ode does not co rrespond to any Modbus slave in particular, as it appli es to all Modbus slaves. All the commands which will be co nfigured for this node will be transmitted with the “Slave Address” field set to 16#00.
80 7. Appendix A: Technical Characteristics 7.1. Environment Dimensions (excluding connecto rs) Height: 120 mm Width: 27 mm Depth: 75 mm External appearance Plastic case with device for fixing to a DIN rail. Torque PSU connector: between 5 and 7 lbs.-in.
81 7. Appendix A: Technical Characteristics Specific DeviceNet features of the LUFP9 gateway • The LUFP9 gateway is a “group two only server ” DeviceNet sub scriber (cf. DeviceNet Specifications ). • Fragmentation support for transaction s requiring more than 8 bytes of data.
82 7. Appendix A: Technical Characteristics Structure of the LUFP9 gateway’s memory: Outputs • 2 bytes for the activation or inhibition of the down stream network by the gateway (see chapter 5 Gateway Initialization and Diagno stics, page 33). • 510 bytes accessible by the DeviceNet master in the form of output data (see chapter 8.
83 8. Appendix B: Default Configuration The configuration described be low corresponds to the LUFP 9 gateway’s default configuration. This chapter mainly gives the user inform ation about the performan ces obtained on the downstream Modbus network.
84 8. Appendix B: Default Configuration 8.2. Content of the Gateway’s DPRAM Memory The LUFP9 gateway’s DPRAM memory contains all of the data exchanged b etween the gateway and the 8 TeSys U m otor.
85 8. Appendix B: Default Configuration 8.2.2. Output Data Memory Area The gateway has 512 output bytes. Only the first 32 bytes are used. All of these 32 bytes make up the gateway’s output are a, referenced as “Output 1” in th e RsNetWorx configurator.
86 9. Appendix C: Practical Example (RSLogix 500) A practical example can be found on the CD L U9CD1. It is made up of two files. The first of these, “ SLC_Guide_LUFP9.dnt ”, shows the configuration of the Devi ceNe t scanner in RsNetWo rx, described in the previous chapters.
87 9. Appendix C: Practical Example (RSLogix 500) The various data used by the main program a re shown in the following table: Address Symbol Description I:1.1/ 0 7 → I:1/23 ABC_HS_SEND Flip flop indicating that there is a ne w gateway diagnostic O:1.
88 9. Appendix C: Practical Example (RSLogix 500) The various data used by this sub-prog ram are shown in the following table: Address Symbol Description I:1.[N7:0]/ 0 0— B i t 0 0 “Ready” of the TeSy s U status re gister I:1.[N7:0]/ 0 1— B i t 0 1 “On” of the TeSys U status register I:1.
89 9. Appendix C: Practical Example (RSLogix 500) 9.3. Sub-Program for Reading a Parameter in all TeSys U Motor Starters: “LAD 4 - RD_PAR” The role of this sub-program i s to read the value of a single parameter on all TeSys U motor starters. As they are read, the results are placed into an array starting at N7:4 (motor starter no.
90 9. Appendix C: Practical Example (RSLogix 500) The various data used by this sub-prog ram are shown in the following table: Address Symbol Description B3.
91 9. Appendix C: Practical Example (RSLogix 500) 9.4. Sub-Program for Writing a Parameter on a Single TeSys U Motor Starter: “LAD 5 - WR_PAR” The role of this sub-p rogram consists of writing the va lue of a parameter on a single TeSys U motor starter.
92 9. Appendix C: Practical Example (RSLogix 500) • Management of the response timeout (T4:1). Until the response arrives or if its content is incorrect (bit B3:0/4 = 0), a 3-second timer is set. When this timeo ut (T4:1/DN = 1) is trigge red, the timer is reinitialized, the parameter’s address (O:1.
93 9. Appendix C: Practical Example (RSLogix 500) Address Symbol Description S:24 INDEX_SYS Index register used in indexed addressing (prefix: ‘#’) T4:1 TIMEOUT_WR_PARAM Timer for the timeout of t.
94 10. Appendix D: DeviceNet Objects 10.1. Introduction to the Gateway’s DeviceNet Objects The LUFP9 gateway’s software has been d eveloped in accordance with the Object Modelling from the DeviceNet protocol.
95 10. Appendix D: DeviceNet Objects 10.3. Graphical Representation of the Gateway’s DeviceNet Objects Connection O bject M essage Router DeviceNet Objec t Identity Objec t Assembl y Objec ts Acknow.
96 10. Appendix D: DeviceNet Objects Attributes of instance 16#01 of class 16#01 ID Access Name Need Type Value 16#01 Get Vendor ID Required UINT 90 All vendor IDs for DeviceNet products are managed by the ODVA. With the LUFP9 gatew ay, this ID is set to 90 (gateways from HMS Fieldbus Systems AB (Hassbjer Micro Sys) ).
97 10. Appendix D: DeviceNet Objects 10.5. Message Router Object (class 16#02) The “Message Router” object is the element through whi ch all objects of the “Explicit messages” type go so that they can be routed to the objects they are intended fo r.
98 10. Appendix D: DeviceNet Objects ID Access Na me Need Ty pe Value 16#05 Get Allocation information Required BYTE , USINT (variable) This attribute supplies gener al information about the Dev i ceNet allocatio n method currently being used.
99 10. Appendix D: DeviceNet Objects Attributes of instance 16#64 of class 16#04 (M ODBUS I NPUTS ) ID Access Name Need Type Value 16#03 Get Data Required USINT […] (array of values) The data gather.
100 10. Appendix D: DeviceNet Objects The “Change-of-State / Cyclic Conne ction” connection (I nsta nce ID 16#04) allows the gateway to produce its data only when their values change o r when a timer called “heartbeat rate ” times out.
101 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#03 Get / Set Tran sport class trigger Required BYTE 16#83 This attribute defines the behaviour of the connection. In the case of the LUFP9 gate way’s “Explicit C onnection” object, this attribute takes the value 16#83, broken d own as follows: Bits 0-3 = 2#0011 .
102 10. Appendix D: DeviceNet Objects Attributes of instance 16#02 of class 16#05 : Polled Command/Response Connection ID Access Name Need Type Value 16#01 Get State Required USINT 0 to 4 This attribute represents the stat us of the “Polled Comm and/Response Connection” object.
103 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#0E Get / Set Produced connectio n path Required USINT […] 16# 20 04 24 64 30 03 This attribute defines the local path ( without MAC ID) of the gateway’s DeviceNet obj ect used to produce the connection’s data.
104 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#07 Get / Set Prod uced connection size Required UINT (size of the input area) Maximum number of bytes which can be transmitted via th is instance’s conne ction. T he value of this attrib ute should be set to the size of the input area choosed us ing attribute 16#0E.
105 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#04 Get / Set Produced connection ID Required UINT 2#0 •• •• xx xxxx The value of this attribute is placed in the CAN protoc ol’s Identifier Field when th e connection goes into transmission mode (group 1 messages).
106 10. Appendix D: DeviceNet Objects Attributes of instances 16#01 to 16#04 o f class 16#05 Service code Nam e of the service Need Des cription 16#0E Get_Attribute_S ingle Required T his service allows to read the va lue of one of the attributes from one of the instances of the “Connection Object.
107 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#06 Get Data with ack path list size Optional BYTE 1 This attribute represents the maximum number of members which can be placed in the data with ack path list.
108 10. Appendix D: DeviceNet Objects 10.10. I/O Data Input Ma pping Object (Class 16#A0) The “I/O Data Input Mapping Object” has o nly one instance (In stance ID = 16#01) and is specifi c to the LUFP9 gateway. It contains all the data from the gateway’s uniq ue input are a.
109 10. Appendix D: DeviceNet Objects 10.11. I/O Data Output Mapping Object (Class 16#A1) The “I/O Data Output Mapping Object” has only one instance (Instance ID = 16#01) and is spe cific to the LUFP9 gateway. It contains all the data from the gateway’s unique output area.
110 10. Appendix D: DeviceNet Objects 10.12. Diagnostic Ob ject (Class 16#AA) The “Diagnostic Object” has o nly one instance (Instance ID = 16#01) and is specific to the LUFP9 gateway. It contains a large a mount of diagnostic data of all leve ls.
111 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#09 Get LED status Optional USINT [6] (variable) The values of the elements of this a ttribute c orrespond to the status of t he gateway’s 6 LEDs (1 byte per LED). The first byte corresponds to LED c , the second to LED d , etc.
112 10. Appendix D: DeviceNet Objects ID Access Name Need Type Value 16#11 Get IN total length Optional UINT 16#0020 This attribute indicates the total size of the in put data used i n the gateway’s extended memor y ( IN bytes supported ), expressed as a number of bytes.
113 11. Appendix E: Modbus Commands Function code Broadcast (1) Modbus command 0 3 16#03 — Read Holding Registers 0 6 16#06 Yes Preset Single Register Only the Modbus commands shown in the right-hand table are suppo rted by the gateway.
114 11. Appendix E: Modbus Commands Chapter 6.11 Adding and Setting Up a Modbus Command, pa ge 62, also shows a few examples of correspondences betwe en the elements displayed in AbcConf and the corre sponding Modbus frame fields. See also: Chapter 6.
115 11. Appendix E: Modbus Commands 11.3. “Preset Multiple Registers” Command (16#10) Frame Field Value or properties Query Starting Address (MSB) Starting Address (LSB) - Address of the 1st outpu.
116 11. Appendix E: Modbus Commands Code Name of the exception Description of the excep tion 16#01 I LLEGAL F UNCTION The query’s “Function” co mmand code is not implemented in the Modbu s slave software, or it is unable to process it for the moment.
.
User’s manual V1.0 2003-03.
An important point after buying a device Schneider Electric LUFP9 (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Schneider Electric LUFP9 yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Schneider Electric LUFP9 - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Schneider Electric LUFP9 you will learn all the available features of the product, as well as information on its operation. The information that you get Schneider Electric LUFP9 will certainly help you make a decision on the purchase.
If you already are a holder of Schneider Electric LUFP9, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Schneider Electric LUFP9.
However, one of the most important roles played by the user manual is to help in solving problems with Schneider Electric LUFP9. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Schneider Electric LUFP9 along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center