Instruction/ maintenance manual of the product P500YMF-C Mitsubishi Electronics
Go to page of 148
AIR CONDITIONERS CITY MUL TI Models PURY-P400, P500YMF-C Service Handbook Service Handbook PUR Y -P400, P500YMF-C HEAD OFFICE MITSUBISHI DENKI BLDG. MARUNOUCHI TOKYO 100-0005 TELEX J24532 CABLE MELCO TOKYO New publication effective Aug 2002 Specifications subject to change without notice.
Contents 1 PRECAUTIONS FOR DEVICES THA T USE R407C REFRIGERANT ..... 3 [1] Storage of Piping Material ................................................................. 4 [2] Piping Machining ............................................................
Contents 1 PRECAUTIONS FOR DEVICES THA T USE R407C REFRIGERANT ..... 3 [1] Storage of Piping Material ................................................................. 4 [2] Piping Machining ............................................................
–2– Safety precautions Before installation and electric work Before installing the unit, make sure you read all the “Safety precautions”. The “Safety precautions” provide very important points regarding safety . Make sure you follow them. This equipment may not be applicable to EN61000-3-2: 1995 and EN61000-3-3: 1995.
–3– 1 1 1 1 1 PRECAUTIONS FOR DEVICES THA T USE R407C REFRIGERANT Caution Do not use the existing refrigerant piping. • The old refrigerant and refrigerator oil in the existing piping contains a large amount of chlorine which may cause the refrigerator oil of the new unit to deterio- rate.
– 4 – [1] Storage of Piping Material (1) Storage location Store the pipes to be used indoors. (W arehouse at site or owner ’ s warehouse) Storing them outdoors may cause dirt, waste, or water to infiltrate. (2) Pipe sealing before storage Both ends of the pipes should be sealed until immediately before brazing.
– 5 – Use only the necessary minimum quantity of oil ! Reason : 1. The refrigerator oil used for the equipment is highly hygroscopic and may introduce water inside. Notes : • Introducing a great quantity of mineral oil into the refrigerant circuit may also cause a compressor failure.
– 6 – [3] Brazing No changes from the conventional method, but special care is required so that foreign matter (ie. oxide scale, water , dirt, etc.) does not enter the refrigerant circuit. Example : Inner state of brazed section When non-oxide brazing was not used When non-oxide brazing was used Items to be strictly observed : 1.
– 7 – [4] Airtightness T est No changes from the conventional method. Note that a refrigerant leakage detector for R22 cannot detect R407C leakage.
– 8 – Cylin- der Cylin- der V alve V alve Liquid Liquid [6] Charging of Refrigerant R407C must be in a liquid state when charging, because it is a non-azeotropic refrigerant.
– 9 – • PURY -P400 · 500YMF-C 2 2 2 2 2 COMPONENT OF EQUIPMENT [1] Appearance of Components Outdoor unit Propeller fan Heat exchanger(front) Compressor Propeller fan Fan motor Fan motor Heat ex.
– 10 – Controller Box RELA Y board F ANCON board (for MF3) INV board MAIN board Choke coil (L2) Inteligent P ower Module (IPM) G/A board Y -C board SNB board Diode stack (DS) Magnetic contactor (5.
– 11 – MAIN board • PUHY / PUR Y CN51 Indication distance 3 - 4 Compressor ON/OFF 3 - 5 Trouble CNRS3 Serial transmission to INV board CN3D SW1 CNTR CNFC1 CNVCC4 Power source for control(5V) CN2.
– 12 – INV board CNDR2 Out put to G/A board CNTH CN15V2 Power supply for IPM control CNACCT CNAC2 Power source 1 L2 3 N 5 G CN52C Control for 52C CNF AN Control for MF1 CNR CNRS2 Serial transmissi.
– 13 – CNF AN CNPOW CNFC2 CN15V1 CNDR1 CNIPM1 CNE CNDC1 F ANCON board G/A board.
– 14 – Y -C board SNB board.
– 15 – BC controller CNTR CN02 M-NET transmission CN03 CN12 Power supply 1 EARTH 3 N 5 L SW4 SW2 SW1 SW5.
– 16 – RELA Y 10 board RELA Y 4 board.
– 17 – [2] Refrigerant Circuit Diagram and Thermal Sensor PUR Y -P400, 500YMF-C : Solenoid valve : Orifice : Capillary : Check valve : Thermal sensor : Strainer SP : Service port ACC : Accumulator.
– 18 – CMB-P108, 1010, 1013, 1016V -F A SVM2 TH16 TH11 TH12 SVM1 PS3 PS1 Check v alve b lock Solenoid v alve b lock LEV3 LEV1 TH15 Gas/liquid separator : Solenoid valv e : Orifice : Capillar y : C.
– 19 – CMB-P108V -FB Check v alve b lock LEV3a TH25 TH22 Solenoid v alve b lock CP : Solenoid valv e : Orifice : Capillar y : Check v alve : Ther mal sensor : Strainer.
– 20 – [3] Electrical Wiring Diagram PUR Y -P400 · 500YMF-C.
– 21 – CMB-P108 · 1010V -F A 5 1 2 3 4 4 1 2 3 1 2 3 1 2 3 SVM1 SVM2 13 14 15 9 10 11 12 5 6 7 8 4 4 5 6 87 9 12 11 10 15 14 13 16 16 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3.
– 22 – CMB-P1013 · 1016V -F A 3 2 1 Power source L TB01 TB01 N ~220V~240V 50/60Hz 1 2 3 SVM2 SVM1 1 3 2 8 8 9 9 10 10 11 11 12 12 13 13 3 2 4 4 1 5 5 6 6 7 7 14 14 15 15 16 16 4 3 2 1 4 3 2 1 4 3.
– 23 – CMB-P108V -FB 13 14 15 9 10 11 12 5 6 7 8 4 4 5 6 87 9 12 11 10 15 14 13 16 16 1 2 3 4 2 3 4 1 2 3 4 1 2 3 4 SV7B SV8B SV7A SV8A SV7C SV8C 1 SV1B SV1A SV1C 1 5 6 7 8 9 10 11 12 13 14 15 16 .
–24– 27.0/19 27.0/19 35.0/24.0 35.0/24.0 55 55 55 55 55 27.1 29.2 27.6/26.2/25.2 34.6/32.8/31.7 2000 300 2000 350 200 344 100 100 100 50 50 125 125 125 100 25 10 10 10 10 10 10 10 10 10 10 Hi Hi H.
– 25 – 20.0/- 20.0/- 7.0/6.0 7.0/6.0 55 55 55 55 55 27.1 29.2 25.6/24.3/23.4 32.1/30.5/29.4 60 1400 60 1600 122 Discharge (TH1 1/TH12) Heat exchanger inlet (TH5) Inlet Accumulator Outlet Suction (Comp) (No.1/No.2) Low pressure saturation temperature (TH2) Upper (TH4) Liquid level Lower (TH3) Shell bottom (Comp No.
– 26 – Function According to Switch Operation Switch Set T iming When Off When On When Off When On SWU 1 ~ 2 SW1 1 ~ 8 Refer to LED monitor display on the outdoor board. 9 ~ 10 SW2 1 2 3 4 5 6 7 8 9 10 SW3 1 2 3 4 5 6 7 8 9 10 SW4 1 2 3 4 5 6 7 8 9 10 - Centralized control not connected.
– 27 – (2) Indoor unit DIP SW1, 3 Model P71 P80 P100 P125 P140 P200 P250 Capacity (model name) code 14 16 20 25 28 40 50 SW2 setting Model P20 P25 P32 P40 P50 P63 Capacity (model name) code 45 68 .
– 28 – Ceiling height 3 3.5 m 2 2.8 m 1 2.3 m Setting of DIP SW4 Setting of DIP SW5 1234 ON OFF ON OFF –––– ON OFF ON OFF OFF OFF OFF ON ON OFF OFF ON OFF ON OFF ON OFF OFF ON ON –––.
– 29 – 3 3 3 3 3 TEST RUN [1] Before T est Run (1) Check points before test run 1 Neither refrigerant leak nor loose power source/ transmission lines should be found. 2 Confirm that the resistance between the power source terminal block and the ground exceeds 2M Ω by measur- ing it with a DC 500 V megger .
– 30 – (3) Check points for test run when mounting options (4) Attention for mounting drain water lifting-up mechanism Built-in optional parts Content of test run Check point Result Mounting of dr.
– 31 – (5) Check points for system structure In the case of the PURY -P400 · 500 YMF-C Check points from installation work to test run. Classification Portion Check item T rouble Installation and.
– 32 – Classification T ransmission line Portion Check item 1 Limitation of transmission line length followed? For example, 200m or less (total length : 500m) at the farthest. 2 1.25mm 2 or more transmission line used? (Remote controller 10m or less 0.
– 33 – [2] T est Run Method Operation procedure 1 T urn on universal power supply at least 12 hours before starting → Displaying “ HO ” on display panel for about two minutes 2 Press TEST RU.
– 34 – 4 GROUPING REGISTRA TION OF INDOOR UNITS WITH M-NET REMOTE CONTROLLER (1) Switch function • The switch operation to register with the remote controller is shown below: Registration/ ordin.
– 35 – (2) Attribute display of unit • At the group registration and the confirmation/deletion of registration/connection information, the type (attribute) of the unit is displayed with two English characters.
– 36 – (3) Group registration of indoor unit 1) Registration method • Group registration of indoor unit ........................................................................ 1 The indoor unit to be controlled by a remote controller is registered on the remote controller .
– 37 – 2) Method of retrieval/confirmation • Retrieval/confirmation of group registration information on indoor unit .............. 2 The address of the indoor unit being registered on the remote controller is displayed.
– 38 – 3) Method of deletion • Deletion of group registration information of indoor unit ...................................... 4 [Operation procedure] 1 With the remote controller under stoppin.
– 39 – 4) Deletion of information on address not existing • Deletion of information on address not existing .....................................
–40– 5 5 5 5 5 CONTROL [1] Control of Outdoor Unit [1]- 1 PUR Y -P400·500 YMF-C (1) Initial processing • When turning on power source, initial processing of microcomputer is given top priority . • During initial processing, control processing corresponding to operation signal is suspended.
– 41 – • The operating temperature is 124 ° C (No. 1 compressor) or 1 15 ° C (No. 2 compressor). 4) Compressor frequency control 1 Ordinary control The ordinary control is performed after the following times have passed. • 30 seconds after the start of the compressor or 30 seconds after the completion of defrosting.
– 42 – Item At compressor is started Compressor stopped during cool- ing or heating mode After operation has been stopped During defrosting ((*1) in Fig below) During oil recovery operation When l.
– 43 – (5) Oil return control (Electronic expansion valve (SLEV)) • The amount of opening of the oil-return LEV (SLEV) is determined as follows: in cooling, by the operating capacity of the No. 1 compressor and the ambient temperature; in heating, by the operating capacity of the No.
– 44 – 5) Change in number of operating indoor units while defrosting • If the number of indoor units changes while the outdoor unit is defrosting, the defrosting operation continues. Once defrosting has ended, control for changing the number of units is performed.
– 45 – TH9 F our-wa y valv e Compressor Accumulator CS circuit Separate compressor TH2 LPS Heat e xchanger Outdoor heat e xchanger Indoor heat e xchanger Flow control valv e Operation mode Full co.
– 46 – (1 1) Control at initial starting • When the ambient temperature is low (5 ° C or less in cooling and – 5 ° C or less in heating), initial starting will be performed if the unit is started within 4 hours of the power being turned on.
– 47 – <Initial start control timing chart> Note 1: If the frequency of No. 1 compressor is above the specified level at the end of Step 2, the mode proceeds to Step 3.
– 48 – (12) Emergency response operating mode The emergency operation mode is a mode in which the unit is run in an emergency to respond to the trouble when the compressors (No. 1, No. 2) break down, making it possible to carry out a abnormality reset using the remote control.
– 49 – Mode Connection [2] Control of BC Controller (1) Control of SV A, SVB and SVC SV A, SVB and SVC are turned on and off depending on connection mode. Cooling Heating Stop Defrost SV A ON OFF OFF OFF SVB OFF ON OFF OFF SVC ON OFF OFF OFF (2) Control of SVM1 (only F A type) SVM1 is turned on and off corresponding to operation mode.
– 50 – YES NO YES NO YES YES NO NO Normal operations T rouble observed Stop Start Breaker turned on Set indoor ad- dress No. to remote controller Operation command Operation mode Error mode Coolin.
– 51 – (2) BC controller Note : 1 T wo error modes include indoor unit side trouble, BC controller trouble, and outdoor unit side trouble. In the case of indoor unit side trouble, error stop is ob.
– 52 – (3) Indoor unit YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO Normal operations T rouble observed Stop Start Breaker turned on Operation SW turned on 1.
– 53 – (4) Cooling operation YES NO YES YES NO NO 1. Inverter output 0Hz 2. Indoor unit LEV , oil return LEV 3. Solenoid valve OFF 4. Outdoor unit fan stop 5. BC controller solenoid valve OFF 6. BC controller LEV fully closed 1. Inverter frequency control 2.
– 54 – YES YES NO YES YES NO NO NO (5) Heating operation Normal operations Defrosting operations Stop T est run 1. Indoor unit fan very low speed operations 2. Inverter output 0Hz 3. Indoor unit LEV , oil return LEV fully closed 4. Solenoid valve OFF 5.
– 55 – YES NO YES YES NO (6) Dry operation Normal operations Thermostat ON Stop 1. Indoor unit fan stop 2. Inverter output 0Hz 3. Indoor unit LEV , oil return LEV closed 4. Solenoid valve OFF 5. Outdoor unit fan stop 6. BC controller solenoid valve OFF 7.
– 56 – 1 Adjustment of super heat of heat exchanger outlet port of indoor unit during cooling. 2 Adjustment of sub-cool of heat ex- changer outlet port of indoor unit during heating. Indoor unit control (Thermostat). 1 Indoor unit control (Freeze preven- tion, hot adjust, etc.
– 57 – 1 Detects the outdoor air temperature. 2 Performs fan control, liquid level heater control, opening settings of LEV for oil return and other functions. Thermistor R 0 = 15 k Ω B 1/80 = 3460 Rt = 15exp{3460( - )} 0 ° C: 15 k Ω 10 ° C: 9.
– 58 – Resistance check Resistance check Conductivity check using tester . Belt heater AC 200 to 240 V MC1 1280 Ω 45 W MC2 400: 1280 Ω 45 W 500: 1029 Ω 56 W Code heater 2880 Ω (1440 Ω + .
– 59 – [5] Resistance of T emperature Sensor Thermistor for low temperature Thermistor R o = 15k Ω ± 3% (TH3 ~ 9) Thermistor R 120 = 7.465k Ω ± 2% (TH1, 10) R t = 15exp {3460 ( - )} R t = 7.
–60– 1 2 3 4 5 During cooling operations, required refrigerant amount tends to increase (refrigerant in accumulator decreases) in proportion to increase in the number of operating indoor units.
– 61 – 3) Check the refrigerant volume by LED monitor display using the LED. Set the LED monitor display switch (SW1) as shown below and check the past information (history) concerning the refrigerant volume. Set SW1 as shown in he figure at right.
– 62 – TH1 SC1 1 SC16 Pd (High pressure) [3] Refrigerant V olume Adjustment Mode Operation (1) Procedure Depending on the operating conditions, it may be necessary either to charge with supplementary refrigerant, or to drain out some, but if such a case arises, please follow the procedure given below .
– 63 – (2) Refrigerant adjustment in Cooling season (Flow chart) In case of PUR Y -P400, 500YMF-C YES NO Adjustment starts. Start cooling operation of all indoor units in a test run mode.
– 64 – (3) Refrigerant adjustment in heating season (Flow chart) In case of PUR Y -P400, 500YMF-C Start Adjustment Has the operating condition stabilized? Is the accumulator's liquid level AL.
– 65 – Note: 1 If there are any units which are not operating, it will cause refrigerant to accumulate, so by all means operate all the indoor units. Also, in order to prevent stable operation from being disrupted by the thermostat going OFF , set the trial operation mode.
– 66 – 7 7 7 7 7 TROUBLESHOOTING [1] Principal Parts Pressure Sensor (1) Judging Failure 1) Check for failure by comparing the sensing pressure according to the high pressure/low pressure pressure sensor and the pressure gauge pressure.
– 67 – Solenoid V alve (SV1~8) Check if the control board ’ s output signals and the operation of the solenoid valves match. Setting the self-diagnosis switch (SW1) as shown in the figure below causes the ON signal of each relay to be output to the LED ’ s.
– 68 – * Closed torque : 13kg · m (1.3N · m) The refrigerant flow is as following figure. Hot gas (high pressured) flows in cooling mode and cool gas/liquid (low pressured) flows in heating mode.
– 69 – Solenoid V alves Block2 1 3 2 4 CV5b CV7b SV7 SV8 Solenoid V alv es Block 2 CV4b CV6b CV2b ST1 BV1 BV2 CV3b 1 2 3 4.
– 70 – Check V alves Block1 The refrigerant flow in the pipe 6 , 7 , 8 and 9 are depend on ON/OFF of the SV3, 4, 5 and 6. Please confirm by LED monitor display . Y ou can open the cap of valve A, B and C, but 3 types of hexagon socket screw keys. The size is as follows.
– 71 – Check V alves Block2 1 3 5 7 6 4 2 CV5b CV4b CV6b CV2b ST1 BV1 BV2 CV3b Check V alv es Block2 1 3 7 2 4 5 6.
– 72 – Outdoor LEV The valve percentage opening changes in proportion to the number of pulses. (Connections between the outdoor unit ’ s MAIN board and SLEV , (PUR Y -P400 · 500YMF-C)) Output (.
– 73 – 1 Disconnect the control board connector and connect the check LED as shown in the figure below . When the base power supply is turned on, the indoor LEV outputs pulse signals for 10 seconds, the outdoor LEV outputs pulse signals for 17 seconds, and BC controller outputs pulse signals for 10-20 seconds.
–74– Outdoor LEV (SLEV) Coil Removal Procedure (configuration) As shown in the figure, the outdoor LEV is made in such a way that the coils and the body can be separated. <Removing the Coils> Fasten the body tightly at the bottom (Part A in the figure) so that the body will not move, then pull out the coils toward the top.
– 75 – Intelligent Power Module (IPM) Measure resistances between each terminal of IPM with tester , and use the results for troubleshooting. Specified resistance value is dependent on tester type.
– 76 – (2) T rouble and remedy of remote controller (In the case of MA remote controller) Phenomena Factors Check method and handling 1 2 If pushing the remote control operation SW does not make a sound such as feep with the crystal display lamp out, and no operate is possible.
– 77 – Phenomena Factors 3 When the remote control SW is turned on, the indication goes off after approximately 20- 30 seconds, and indoor unit stops. 1) Power supply from the transformer is not available to the control board of BC controller . 1 The original power supply of the BC controller is not turned on.
– 78 – 4 “ HO ” indication on the remote controller is not lit, and the ON/OFF switch does not work. 1) The M-NET transmission power supply form the outdoor unit is not supplied. 1 The original power supply of Indoor Unit is not turned on. 2 The connector on the controller board in Indoor Unit is removed.
– 79 – (In the case of M-NET remote controller) Symptom Cause Checking method & countermeasure 1 2 Despite pressing of remote controller ON/OFF switch, operation does not start and there is no electronic sound.
– 80 – Symptom Cause 3 “ HO ” display on re- mote controller does not disappear and ON/OFF switch is ineffective. (Without using MELANS) 1) Outdoor unit address is set to “ 00 ” 2) Erroneous address. 1 Address setting of indoor unit to be coupled with remote controller incorrect.
– 81 – Symptom Cause Checking method & countermeasure 4 “ 88 ” appears on re- mote controller at registration and access remote controller a) Confirm the address of unit to be coupled. b) Check the connection of transmission line. c) Check the transmission terminal block voltage of unit to be coupled.
– 82 – T ransmission Power Circuit (30 V) Check Procedure If “” is not displayed by the remote control, investigate the points of the trouble by the following procedure and correct it. No . Check Item Judgment Response 1 2 3 4 5 6 7 8 9 Disconnect the transmission line from TB3 and check the TB3 voltage.
– 83 – (3) Investigation of transmission wave shape/noise Control is performed by exchanging signals between outdoor unit, indoor unit and remote controller by M-NET transmission. If noise should enter into the transmission line, the normal transmission will be hindered causing erroneous operation.
– 84 – 3) Checking and measures to be taken (a) Measures against noise Check the items below when noise can be confirmed on wave shape or the error code in the item 1) is generated.
– 85 – 4) Treatment of Inverter and Compressor T roubles If the compressor does not work when error codes 4240, 4250, 4340 or 4350 are detected, determine the point of malfunction by following the steps in the LED monitor display and countermeasures depending on the check code displayed , then perform the procedures below .
– 86 – 5) T reatment of Fan Motor Related T roubles Condition Possible Cause Check Method and T reatment 1 The fan motor will not run for 20 minutes or longer when the AK value is 10%. (When the MAIN board ’ s SW1 is set as shown below , the AK value is displayed by the service LED.
– 87 – 6) Troubleshooting at breaker tripping Check items Measures to be taken 1 Check the breaker capacity . 2 Check for a short circuit or grounding in the electrical system other than the inverter . 3 Check the resistance between terminals on the terminal block TB1A for power source.
– 88 – 7) Individual Parts Failure Judgment Methods. Part Name Judgment Method Diode Stack (DS) Refer to “ Judging Diode Stack Failure. ” Intelligent Power Module(IPM) Refer to “ Judging IPM Failure. ” Electromagnetic Contactor (52C) Measure the resistance value at each terminal.
– 89 – Motor (Compressor) G/A board Red UV W N P White Black Black Capacitor (C2,C3) Red IPM.
– 90 – (4) T roubleshooting the major components of the BC controller 1) Pressure sensor Pressure sensor troubleshooting flow Check on the LED monitor dis- play .
– 91 – Note 1 : • Symptoms of incorrect i.e, reverse connection of PS 1 and PS 3 to BC controller board Note 2 : • Check using LED monitor display switch (outdoor MAIN board SW1) Note 3 : • Check CNP1 (liquid measurement) and CMP3 (intermediate) connectors on BC controller board for disconnection or looseness.
–92– 2) T emperature Sensor Thermistor troubleshooting flow Start Disconnect applicable thermistor connector from the board. Measure temperature of applicable thermistor (actual measured value). Check thermistor resistance value. Compare temperature for thermistor resistance value with actual mea- sured valued.
– 93 – T ouch the probes of the tester or other instrument to the shaded areas to measure. Thermistor R o =15 k Ω Rt=15exp 3460 ( – ) 1 ON 23 456789 1 0 1 ON 23 456789 1 0 1 ON 23 456789 1 0 1 ON 23 456789 1 0 Note 1 : • Board connector CN10 corresponds to TH1 1 through TH14, while connector CN1 1 corresponds to TH15 through TS15.
– 94 – No cooling No heating Check disconnection or looseness of connectors. Is there a problem? Operate in cooling or heating (1 system only when there are plural systems) Cooling or heating operation? Heating operation Note 1 Check if LEV 1 are fully open LEV 1 fully open? LEV3 are not controlled Check if LEV 1 are fully shut.
– 95 – 1 LEV Note 1 : • Symptoms of incorrect connection to BC controller LEV board Improper installation is the same for 1 and 2 , so it is omitted here. Note 2 : Method for checking LEV full open, full closed condition 1 Check LEV full opening (pulse) using the LED monitor display (outdoor controller board SW1).
– 96 – 6 6 5 4 3 2 1 5 4 3 2 1 2 5 1 3 4 6 Brown Red Blue Orange Yellow White Brown Red Blue Orange Yellow White To LEV 10k Ω LED (Self-diagnostic monitor) Measured Data Signal OUTDOOR MAIN boar.
– 97 – 2 Solenoid V alve Change the solenoid valve. Change the control board. 220-240V output? With the solenoid valve con- nector is disconnected from the board, use remote controller to turn on the unit and check the output (220-240V) from the controller board.
– 98 – 1 B A Cooling Heating Stopped Defrosting SV A ON OFF OFF OFF SVB OFF ON OFF OFF SVC ON OFF OFF OFF Mode Branch port Normal Malfunction CNTR(1)-(3) Approximately 90 Ω Open or shorted CN03(1)-(3) Approximately 1.7 Ω * Disconnect the connector before measurement.
– 99 – [2] BC Controller Disassembly Procedure (1) Service panel Be careful on removing heavy parts. Procedure Illustrations 1. Remove the two screws securing the electric panel box. Loosen the two screws securing the electric panel box, and then remove the box.
– 100 – (3) Thermistor (Liquid and gas piping temperature detection) Be careful when removing heavy parts. Procedure Photos 1. Remove the front panel 1 Use the procedure under (1)-1.2.3 to check TH1 1, TH12, TH15, and TH16. 2. Disconnect the piping sensor lead from the control- ler panel.
– 101 – (5) LEV Be careful on removing heavy parts. Procedure Photos 1. Remove the service panel. See (1)-1.2.3 2. Replace the applicable LEV . Important! 1 When performing the above procedure, be sure to allow for enough service space in the ceiling area for welding.
– 102 – Check Code List Check Code Check Content 0403 Serial transmission abnormality 0900 T rial operation 1102 Discharge temperature abnormality 1111 Low pressure saturation temperature sensor a.
– 103 – Check Code Check Content 6606 Communications with transmission processor abnormality 6607 No ACK abnormality 6608 No response abnormality 6831 Abnormal MA communication receiving (No recei.
– 104 – Checking code Meaning, detecting method Cause Checking method & Countermeasure Serial transmission abnormality 0403 If serial transmission cannot be established between the MAIN and INV boards. 1) Wiring is defective. 2) Switches are set wrong on the INV board.
– 105 – Checking code Meaning, detecting method Cause Checking method & Countermeasure Discharge temperature abnormality (Outdoor unit) 1102 1.
– 106 – Checking code Meaning, detecting method Cause Checking method & Countermeasure Low pressure saturation tempera- ture sensor abnormal- ity (TH2) Liquid level detecting tempera- ture sensor abnormal- ity (TH4) Liquid level detecting tempera- ture sensor abnormal- ity (TH3) 1111 1112 1113 1.
–107– Checking code Meaning, detecting method Cause Checking method & Countermeasure 1301 1302 Low pressure abnoramlity High pressure abnoramlity 1 (Outdoor unit) When starting from the stop m.
– 108 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 1302 1368 1370 Liquid side Intermedi- ate side High pressure abnoramlity (BC controller) High pressure abnoramlity 2 (Outdoor unit) When press. sensor detects 1kg/ cm 2 G (0.
– 109 – Checking code Meaning, detecting method Cause Checking method 1500 1501 Insufficient refrigerant abnormality 1. When discharge superheart 10 deg is keeping for 10 minutes or discharge superheat 20 deg for 15 minutes, outdoor unit stops once, and after 3 minutes, the unit restarts.
– 110 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 1505 Judging that the state when the suction pressure reaches 0kg/ cm 2 G (0MPa) during compressor operat.
– 111 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 4103 41 15 Reverse phase abnormality Power supply sync signal abnormality Reverse phase (or open phase) in the power system is being de- tected, so operation cannot be started.
– 112 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 4116 4200 Fan speed abnormality (motor abnoramlity) VDC sensor/circuit abnormality (Detects only for PKFY -V AM) 1 .
– 113 – 4220 4230 Bus voltage abnormality Radiator panel overheat protection 1 If VDC 400 V is de- tected during inverter operation. If the cooling fan stays ON for 5 minutes or longer dur- ing inverter operation, and if THHS 100 ° C is de- tected.
– 114 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 4240 4250 Over loard protection IPM alarm output / Bus voltage abnormality If IAC 32 Arms is detected con- tinuously for 10 minutes during op- eration of the inverter after 5 or more seconds have passed since the inverter started.
– 115 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 4260 5101 5102 5103 5104 5105 5106 5107 Cooling fan abnormality Thermal sensor abnormality (BC controlled) If the heat sink temperature (THHS) 100 ° C for 20 minutes or longer just before the inverter starts.
– 116 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 5201 5201 5203 5301 Pressure sensor abnormality (outdoor unit) IAC sensor/ circuit abnormality Pressure sensor abnormality (BC controller) High pressure side Intermedi- ate 1 When pressue sensor detects 1kg/cm 2 G (0.
– 117 – Checking code Meaning, detecting method Cause Checking method & Countermeasure 5301 Different indoor model connected abnormality An exclusive R22 refrigerant indoor unit was connected to a R407C refrigerant outdoor unit. 1) An error was made in the MAIN board of the outdoor unit (replaced with the wrong circuit board).
– 118 – (2) Communication/system Checking code 6600 6602 Multiple address error Transmission from units with the same address is detected. Note: The address/attribute shown on remote controller indicates the controller which has detected error .
– 119 – T ransmission processor hardware error T ransmission circuit bus-busy er- ror 1 Collision of data transmission: T ransmission can not be per- formed for 4~10 consecutive minutes due to collision of data transmission. 2 Data can not be transmitted on transmission line due to noise for 4~10 consecutive minutes.
– 120 – Checking code 6606 Meaning, detecting method Cause Checking method & Countermeasure 1) Data is not properly transmitted due to casual errouneous operation of the generating controller .
– 121 – Checking code 6607 Meaning, detecting method No ACK error When no ACK signal is detected in 6 continuous times with 30 second interval by transmission side controller , the transmission side detects error . Note: The address/attribute shown on remote controller indicates the controller not providing the answer (ACK).
– 122 – Checking code 6607 (continued) Meaning, detecting method System compo- sition Generating unit address Display of trouble Detecting method Cause Checking method & countermeasure No ACK .
– 123 – Checking code 6607 (continued) Meaning, detecting method System compo- sition Generating unit address Display of trouble Detecting method Cause Checking method & countermeasure No ACK .
– 124 – Checking code 6607 (continued) Meaning, detecting method System compo- sition Generating unit address Display of trouble Detecting method Cause Checking method & countermeasure No ACK .
– 125 – 1) T otal capacity of indoor units in the same refrigerant system exceeds the following: 2) Erroneous setting of OC model se- lector switch (SW3-10). 1) The Indoor unit model name (model code) connected is not connectable. Connectable range.
– 126 – Checking code 7102 7105 7107 71 1 1 7130 Meaning, detecting method Cause Checking method & Countermeasure Connected unit count over Address setting error • Erroneous setting of OC unit address • Erroneous setting of BC con- troller address Trouble source : Outdoor unit BC controller Branch No.
–127– [4] LED Monitor Display (1) How to read LED for service monitor By setting of DIP SW1-1 ~ 1-8, the unit operating condition can be observed with the service LED on the control circuit board. (For the relation of each DIP SW to the content, see the table provided.
– 128 – No SW 1234567890 Item Relay output dis- play 1, Light ON display 0000000000 0 Inspection display 1, OC error 0000~9999 (Address and error code inv er ted) 0000~9999 (Address and error code.
– 129 – No SW 1234567890 Item Outdoor error de- lay history 1010100000 21 0000~9999 Inv er ter error details (0001 - 0009) Inv er ter error details (0001 - 0009) 0000~9999 23 1110100000 45 1011010.
– 130 – No SW 1234567890 Item ↑ ↑ ↑ 59 1101110000 60 0011110000 THHS data Low pressure sensor data 61 1011110000 62 0111110000 α oc 63 1111110000 α oc* 0~9 ("AL=" also display ed.
– 131 – When error stop occurs, No.101 - 125 display the last data just before error stop which is stored in the service memory . No SW 1234567890 Item ↑ ↑ 98 0100011000 99 1100011000 COMP2 op.
– 132 – No SW 1234567890 Item ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 16.
– 133 – No SW 1234567890 Item ↑ ↑ 184 0001110100 185 1001110100 IC10SH IC9SH IC11SH 186 0101110100 187 1101110100 IC12SH ↑ ↑ 188 0011110100 IC13SH ↑ 189 1011110100 IC14SH ↑ ↑ 195 110.
– 134 – No SW 1234567890 Item 0002:Cooling 0001:F an 0003:Heating 0004:Dry 0000:Stop 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256.
– 135 – No SW 1234567890 Item 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 31.
– 136 – No SW 1234567890 Item 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 36.
– 137 – No SW 1234567890 Item 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 40.
– 138 – No SW 1234567890 Item 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 45.
– 139 – No SW 1234567890 Item 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 49.
– 140 – No SW 1234567890 Item ↑ ↑ 499 1100111110 500 0010111110 IC21 filter IC20 filter IC22 filter 501 1010111110 502 0110111110 IC23 filter ↑ ↑ 503 1110111110 IC24 filter 504 0001111110 .
–141– 8 PREP ARA TION, REP AIRS AND REFRIGERANT REFILLING WHEN REP AIRING LEAKS [1] Location of leaks: Extension piping or indoor units (when cooling) (Pump down operation) 1 Attach a pressure gage to the low-pressure servicing check joint (CJ2). 2 Stop all of the indoor units.
– 142 – 12 34 56 7 89 1 0 ON 1 ON 23 456789 1 0 3 Stop all indoor units and the compressor . 1. With SW3-1 on the MAIN board of the outdoor unit set to ON and SW3-2 ON → OFF to stop all indoor units and the compressor . 2. Check that all indoor units have been stopped.
– 143 – [4] Location of leaks: Outdoor unit (when heating) 1 Remove any refrigerant from the entire system (outdoor unit, extension piping and indoor units).
– 144 – YES YES YES YES YES NO NO NO NO NO Start T est run all indoor units. Is the refrigerant composition of α OC correct? (Note 2) Finished checking the composition.
– 145 – Note 1 W ait until the units stabilize as described in the refrigerant amount adjustment procedure in “ Chapter 6 ” . Note 2 After the units are operating stably , check that the refrigerant composition of α OC is within the following ranges, indicating that the composition check is finished.
AIR CONDITIONERS CITY MUL TI Models PURY-P400, P500YMF-C Service Handbook Service Handbook PUR Y -P400, P500YMF-C HEAD OFFICE MITSUBISHI DENKI BLDG. MARUNOUCHI TOKYO 100-0005 TELEX J24532 CABLE MELCO TOKYO New publication effective Aug 2002 Specifications subject to change without notice.
An important point after buying a device Mitsubishi Electronics P500YMF-C (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Mitsubishi Electronics P500YMF-C yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Mitsubishi Electronics P500YMF-C - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Mitsubishi Electronics P500YMF-C you will learn all the available features of the product, as well as information on its operation. The information that you get Mitsubishi Electronics P500YMF-C will certainly help you make a decision on the purchase.
If you already are a holder of Mitsubishi Electronics P500YMF-C, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Mitsubishi Electronics P500YMF-C.
However, one of the most important roles played by the user manual is to help in solving problems with Mitsubishi Electronics P500YMF-C. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Mitsubishi Electronics P500YMF-C along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center