Instruction/ maintenance manual of the product Generating Set FG Wilson
Go to page of 33
GENERATING SET INSTALLATION MANUAL.
ii FOREWORD This installation manual will guide you to the factors to be considered in the installation of your diesel generator system. It discusses location and mounting of the generating set; size of room; ventilation and air flow; engine cooling water supply or radiator location; exhaust outlet; fuel tank and fuel transfer system.
TABLE OF CONTENTS PAGE 1. INSTALLATION FACTORS 2. MOVING THE GENERATING SET 3. GENERATING SET LOCATION 4. GENERATING SET MOUNTING 5. VENTILATION 6. ENGINE EXHAUST 7. EXHAUST SILENCING 8. SOUND ATTENUATION 9. ENGINE COOLING 10. FUEL SUPPLY 11. SEL ECTING FUELS FOR STANDBY DEPENDABILITY 12.
1 1. INSTALLATION FACTORS Once the size of the generating set and the required associated control panel and switchgear have been established, plans for installation can be prepared. Proper attention to mechanical and electrical engineering details will assure a satisfactory power system installation.
2 4. GENERATING SET MOUNTING The generating set will be shipped assembled on a rigid base that precisely aligns the alternator and engine and needs merely to be set in place (on vibration isolation pads for larger sets) and levelled. See figure 4.1 4.
3 5. VENTILATION Any internal combustion engine requires a liberal supply of cool, clean air for combustion. If the air entering the engine intake is too warm or too thin, the engine may not produce its rated power. Operation of the engine and alternator radiates heat into the room and raises the temperature of the room air.
4 5.2 Ventilators To bring in fresh air, there should be an inlet ventilator opening to the outside or at least an opening to another part of the building through which the required amount of air can enter. In smaller rooms, ducting may be used to bring air to the room or directly to the engine's air intake.
5 5.3 Inlet Ventilator Size Before calculating the inlet ventilator size, it is necessary to take into account the radiator cooling air flow requirements and the fan static pressure available when the generating set is operating at its rated load.
6 6. ENGINE EXHAUST Engine exhaust must be directed to the outside through a properly designed exhaust system that does not create excessive back pressure on the engine. A suitable exhaust silencer should be connected into the exhaust piping. Exhaust system components located within the engine room should be insulated to reduce heat radiation.
7 6.2 Exhaust Pipe Flexible Section A flexible connection between the manifold and the exhaust piping system should be used to prevent transmitting engine vibration to the piping and the building, and to isolate the engine and piping from forces due to thermal expansion, motion or weight of piping.
8 Excessive restriction in the exhaust system can be avoided by proper design and construction. To make sure you will avoid problems related to excessive restriction, ask The FG Wilson distributor to review your design.
9 7. EXHAUST SILENCING Excessive noise is objectionable in most locations. Since a large part of the generating set noise is produced in the engine's pulsating exhaust, this noise can be reduced to an acceptable level by using an exhaust silencer.
10 8. SOUND ATTENUATION If noise level must be limited, it should be specified in terms of a sound pressure level at a given distance from the generator enclosure. Then the enclosure must be designed to attenuate the noise generated inside the enclosure to produce the required level outside.
11 FIG 9.1 SET MOUNTED RADIATOR DISCHARGING THROUGH OUTSIDE WALL Set mounted radiators are of two types. One type is used with the cooling fan mounted on the engine.
12 FIG 9.2 REMOTE RADIATOR CONNECTED DIREC TLY FIG 9.3 REMOTE RADIATOR ISOLATED FROM TO ENGINE COOLING SYSTEM ENGINE COOLING SYSTEM BY HEAT EXCHANGER 9.2 Remote Radiator A remote radiator with electric motor-driven can be installed in any convenient location away from the generating set.
13 FIG 9.4 TYPICAL HEAT EXCHANGER INSTALLATION FIG 9.5 HEAT EXCHANGER COOLING SYSTEM 9.5 Antifreeze Protection If the engine is to be exposed to low temperatures, the cooling water in the engine must be protected from freezing. In radiator-cooled installations, antifreeze may be added to the water to prevent freezing.
14 10.2 Remote Fuel Systems Three types of remote fuel systems are recommended by the manufacturer: Fuel System 1: Installations where the bulk fuel tank is lower than the day tank. Fuel System 2: Installations where the bulk fuel tank is higher than the day tank.
15 With this system, the basetank must include an overflow via the return line, sealed fuel level gauges and no manual fill facility. All other connections on top of the tank must be sealed to prevent leakage. Fuel System 2 is not compatible with the polyethylene fuel tanks standard on smaller generator sets.
16 Flexible piping should be used to connect to the engine to avoid damage or leaks caused by engine vibration. The fuel delivery line should pick up fuel from a point no lower than 50 mm (2”) from the bottom of tank at the high end, away from the drain plug.
17 11. SELECTING FUELS FOR STANDBY DEPENDABILITY The types of fuels available for diesel engines, vary from highly volatile jet fuels and kerosene to the heavier fuel oils. Most diesel engines are capable of burning a wide range of fuels within these extremes.
18 Other solutions are to add inhibitors to the fuel or to obtain greater turnover by using the fuel for other purposes. A gum inhibitor added to diesel fuel will keep it in good condition up to two years.
19 12. TABLES AND FORMULAS FOR ENGINEERING STANDBY GENERATING SETS Table 1. Length Equivalents Unit Microns Meters Kilometres Inches Feet Yards Miles 1 Micron 1 0.000001 -- 0.00003937 -- -- -- 1 Meter 1,000,000 1 -- 39.37 3.281 1.0936 -- 1 Kilometre -- 1000 1 39,370 3281 1093.
20 Table 4. Volume and Capacity Equivalents Unit Inches 3 Feet 3 Yards 3 Meters 3 US Liquid Gallons Imperial Gallons Litres 1 Inch 3 1 0.000579 0.0000214 0.0000164 0.004329 0.00359 0.0164 1 Ft. 3 1728 1 0.03704 0.0283 7.481 6.23 28.32 1 Yd. 3 46656 27 1 0.
21 Table 7. Conversions for Measurements of Water Unit Feet 3 Pounds Gal (U.S ) Gal (IMP) Litres Head (Ft) lb/in² Ton/Ft² Head (Meters ) Ft³/Min Gal.(U.S) /Hr Feet 3 1 62.42 -- -- -- -- -- -- -- -- -- Pounds 0.01602 1 0.12 0.10 0.4536 -- -- -- -- -- -- Gal (U.
22 Table 9. Conversions of Units of Flow Unit U.S Gallons/Minute Million U.S Gallons/Day Feet 3 /Second Meters 3 /Hour Litres/Second 1 U.S Gallon/Minute 1 0.001440 0.00223 0.2271 0.0630 1 Million U.S Gallons/Day 694.4 1 1.547 157.73 43.8 1 Foot 3 /Second 448.
23 Table 12. Electrical formulae Desired Data Single Phase Three-Phase Direct Current Kilowatts (kW) I x V x PF 1000 3 x I x V x PF 1000 I x V 1000 Kilovolt-Amperes kVA I x V 1000 3 x V x E 1000 Electric Motor Horsepower Output (HP) I x V x Eff . x PF 746 3 x I x V x Eff .
24 TABLE 13. kVA/kW AMPERAGE AT VARIOUS VOLTAGES (0.8 Power Factor) kVA kW 208V 220V 240V 380V 400V 440V 460V 480V 600V 2400V 33000V 4160V 6.3 5 17.5 16.5 15.2 9.6 9.1 8.3 8.1 7.6 6.1 9.4 7.5 26.1 24.7 22.6 14.3 13.6 12.3 12 11.3 9.1 12.5 10 34.7 33 30.
25 Conversions of Centigrade and Fahrenheit Water freezes at 0 ºC (32ºF) Water boils at 100 ºC (212ºF) ºF= ( 1.8 x ºC ) + 32 ºC = 0.5555 ( ºF - 32 ) Fuel Consumption Formulas Fuel Consumption ( lb / hr ) Specific Fuel Cons . ( lb / BHP / hr ) x BHP = Fuel Consumption ( US gal / hr ) Spec .
26 13. GLOSSARY OF TERMS ALTERNATING CURRENT (AC) - A current which periodically reverses in direction and changes its magnitude as it flows through a conductor or electrical circuit.
27 CURRENT (I) - The rate of flow of electricity. DC flows from negative to positive. AC alternates in direction. The current flow theory is used conventionally in power and the current direction is positive to negative.
28 kW - 1,000 Watts (Real power). Equal to KVA multiplied by the power factor. POWER - Rate of performing work, or energy per unit of time. Mechanical power is often measured in horsepower, electrical power in kilowatts.
29 TELEPHONE INFLUENCE FACTOR (TIF) - The telephone influence factor of a synchronous generator is a measure of the possible effect of harmonics in the generator voltage wave on telephone circuits. TIF is measured at the generator terminals on open circuit at rated voltage and frequency.
276-851 INSTALL.DOC/0601 GROUP HEADQUARTERS Old Glenarm Road Larne, Co. Antrim BT40 1EJ Northern Ireland, United Kingdom Telephone: (44) 028 2826 1000 Fax: (44) 028 2826 1111.
An important point after buying a device FG Wilson Generating Set (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought FG Wilson Generating Set yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data FG Wilson Generating Set - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, FG Wilson Generating Set you will learn all the available features of the product, as well as information on its operation. The information that you get FG Wilson Generating Set will certainly help you make a decision on the purchase.
If you already are a holder of FG Wilson Generating Set, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime FG Wilson Generating Set.
However, one of the most important roles played by the user manual is to help in solving problems with FG Wilson Generating Set. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device FG Wilson Generating Set along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center