Instruction/ maintenance manual of the product SLUU083A Texas Instruments
Go to page of 19
.
IMPORT ANT NOTICE T exas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
T rademarks iii Read This First Preface Read This First About This Manual This user ’ s guide describes the bq2400x evaluation module. The EVM conve- niently evaluates a linear Li-ion bq2400x charge-management solution for one- and two-cell battery-pack applications.
Running Title — Attribute Reference v Contents Contents 1 Introduction 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Background 1-2 . . . . . . . . .
1-1 Introduction This user ’ s guide describes the bq2400x Evaluation Module (SLUP051). The EVM conveniently evaluates a linear Li-ion bq2400x charge-management solution for one- and two-cell battery-pack applications. This guide describes a complete designed-and-tested charger , which delivers up to 1.
Background 1-2 1.1 Background The bq2400x series ICs are advanced Li-Ion linear charge management devices for highly integrated and space-limited applications.
Performance Specification Summary 1-3 Introduction T able 1 – 2. Performance Specification Summary (T wo Cell) Specification T est Conditions Min Ty p Max Units Input dc voltage, V DC 9.1 9.5 † V Battery charge current I CHG J4 shorted, J3 open 0.
2-1 T est Summary T est Summary This chapter shows the test setups used, and the tests performed, in designing the bq2400xEVM. T opic Page 2.1 Setup 2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup 2-2 2.1 Setup The bq2400X EVM board requires a DC power source to provide input power and a single-cell lithium-ion or lithium-polymer battery to charge. Note: Other versions of the bq2400x IC can charge two-cell battery packs. The test setup connections and jumper setting selections are listed below .
T est Procedures 2-3 T est Summary Note: V I for a single cell should not exceed 5.3 VDC for the 1-A charge rate and 7.6 V for the .5-A charge rate. Adjust the input power supply for 5 V . The red LED should illuminate to indicate charging, unless there is a fault or the battery is fully charged.
T est Procedures 2-4 The bq2400x enters preconditioning mode if the battery is below the LowV threshold. In this mode, the bq2400x trickle-charges with approximately 65 mA for approximately 23 minutes. If the battery does not reach the LowV threshold after this period, then the charge current is terminated and the bq2400x enters fault mode.
3-1 Physical Layouts Physical Layouts This chapter contains the board layout and assembly drawings for the SLUP051 EVM. T opic Page 3.1 Board Layout 3-2 .
Board Layout 3-2 3.1 Board Layout Figure 3-1 shows the top layer of the SLUP051. Figure 3-2 shows the bottom layer . Figure 3-3 shows the SLUP051 top assembly view .
Board Layout 3-3 Physical Layouts Figure 3 – 2. SLUP051 Board Layout Bottom Layer Figure 3 – 3. SLUP051 T op Assembly View.
4-1 Bill of Materials Bill of Materials This chapter contains the bill of materials required for the SLUP051 EVM. It also specifies the charge status configurations for the bq2400x. T opic Page 4.1 Bill of Materials 4-2 . . . . . . . . . . . . . . . .
Bill of Materials 4-2 4.1 Bill of Materials T able 4-1 lists materials required for the SLUP051 EVM. T able 4 – 1. SLUP051 Bill of Materials Qty Reference Designator Part Number Description MFG Size 2 C1, C4 T AJC106M016R Capacitor , 10 µ F tantalum, 16 V , ± 20%, 6032 A VX-Future 1210 1 C2 C0805X7R250-104KNE Capacitor , 0.
bq2400x Charge Status Configurations 4-3 Bill of Materials 4.2 bq2400x Charge Status Configurations T able 4 – 2 lists the charge status configurations for the bq2400x.
A-1 Schematic Schematic This chapter contains the schematic diagram for the EVM. T opic Page A.1 Schematic A-2 . . . . . . . . . . . . . . . . . . . . .
J3 1 3 4 2 5% 511 R6 BQ24000 U1 26 27 28 29 30 25 24 23 22 21 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 0.2 R4 5% 511 R8 1% 51.1K R1 1% 316K R2 0.1 R3 16V 10UF C4 1% 95.3K R7 J4 1 3 4 2 0.1UF C2 J10 1 2 1% 18.7K R5 100 R9 10UF C1 D2 D1 J1 J7 3 2 1 J2 3 2 1 J6 3 2 1 J5 3 2 1 J8 2 1 J9 0.
An important point after buying a device Texas Instruments SLUU083A (or even before the purchase) is to read its user manual. We should do this for several simple reasons:
If you have not bought Texas Instruments SLUU083A yet, this is a good time to familiarize yourself with the basic data on the product. First of all view first pages of the manual, you can find above. You should find there the most important technical data Texas Instruments SLUU083A - thus you can check whether the hardware meets your expectations. When delving into next pages of the user manual, Texas Instruments SLUU083A you will learn all the available features of the product, as well as information on its operation. The information that you get Texas Instruments SLUU083A will certainly help you make a decision on the purchase.
If you already are a holder of Texas Instruments SLUU083A, but have not read the manual yet, you should do it for the reasons described above. You will learn then if you properly used the available features, and whether you have not made any mistakes, which can shorten the lifetime Texas Instruments SLUU083A.
However, one of the most important roles played by the user manual is to help in solving problems with Texas Instruments SLUU083A. Almost always you will find there Troubleshooting, which are the most frequently occurring failures and malfunctions of the device Texas Instruments SLUU083A along with tips on how to solve them. Even if you fail to solve the problem, the manual will show you a further procedure – contact to the customer service center or the nearest service center